Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理。

本文分享自华为云社区《[Python图像处理] 十四.基于OpenCV和像素处理的图像灰度化处理》,作者: eastmount 。

本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理。基础性知识希望对您有所帮助。

  • 1.图像灰度化原理
  • 2.基于OpenCV的图像灰度化处理
  • 3.基于像素操作的图像灰度化处理

一.图像灰度化原理

像灰度化是将一幅彩色图像转换为灰度化图像的过程。彩色图像通常包括R、G、B三个分量,分别显示出红绿蓝等各种颜色,灰度化就是使彩色图像的R、G、B三个分量相等的过程。灰度图像中每个像素仅具有一种样本颜色,其灰度是位于黑色与白色之间的多级色彩深度,灰度值大的像素点比较亮,反之比较暗,像素值最大为255(表示白色),像素值最小为0(表示黑色)。

假设某点的颜色由RGB(R,G,B)组成,常见灰度处理算法如表7.1所示:

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

表7.1中Gray表示灰度处理之后的颜色,然后将原始RGB(R,G,B)颜色均匀地替换成新颜色RGB(Gray,Gray,Gray),从而将彩色图片转化为灰度图像。

一种常见的方法是将RGB三个分量求和再取平均值,但更为准确的方法是设置不同的权重,将RGB分量按不同的比例进行灰度划分。比如人类的眼睛感官蓝色的敏感度最低,敏感最高的是绿色,因此将RGB按照0.299、0.587、0.144比例加权平均能得到较合理的灰度图像,如公式7.1所示。

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

二.基于OpenCV的图像灰度化处理

在日常生活中,我们看到的大多数彩色图像都是RGB类型,但是在图像处理过程中,常常需要用到灰度图像、二值图像、HSV、HSI等颜色,OpenCV提供了cvtColor()函数实现这些功能。其函数原型如下所示:

dst = cv2.cvtColor(src, code[, dst[, dstCn]])

  • src表示输入图像,需要进行颜色空间变换的原图像
  • dst表示输出图像,其大小和深度与src一致
  • code表示转换的代码或标识
  • dstCn表示目标图像通道数,其值为0时,则有src和code决定

该函数的作用是将一个图像从一个颜色空间转换到另一个颜色空间,其中,RGB是指Red、Green和Blue,一副图像由这三个通道(channel)构成;Gray表示只有灰度值一个通道;HSV包含Hue(色调)、Saturation(饱和度)和Value(亮度)三个通道。在OpenCV中,常见的颜色空间转换标识包括CV_BGR2BGRA、CV_RGB2GRAY、CV_GRAY2RGB、CV_BGR2HSV、CV_BGR2XYZ、CV_BGR2HLS等。

下面是调用cvtColor()函数将图像进行灰度化处理的代码。

#encoding:utf-8
import cv2  
import numpy as np  
#读取原始图片
src = cv2.imread('miao.png')
#图像灰度化处理
grayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", grayImage)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示,左边是彩色的苗族服饰原图,右边是将彩色图像进行灰度化处理之后的灰度图。其中,灰度图将一个像素点的三个颜色变量设置为相当,R=G=B,此时该值称为灰度值。

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

同样,可以调用 grayImage = cv2.cvtColor(src, cv2.COLOR_BGR2HSV) 核心代码将彩色图像转换为HSV颜色空间,如下图所示。

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

下面Image_Processing_07_02.py代码对比了九种常见的颜色空间,包括BGR、RGB、GRAY、HSV、YCrCb、HLS、XYZ、LAB和YUV,并循环显示处理后的图像。

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img_BGR = cv2.imread('miao.png')
#BGR转换为RGB
img_RGB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2RGB)
#灰度化处理
img_GRAY = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2GRAY)
#BGR转HSV
img_HSV = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2HSV)
#BGR转YCrCb
img_YCrCb = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2YCrCb)
#BGR转HLS
img_HLS = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2HLS)
#BGR转XYZ
img_XYZ = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2XYZ)
#BGR转LAB
img_LAB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2LAB)
#BGR转YUV
img_YUV = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2YUV)
#调用matplotlib显示处理结果
titles = ['BGR', 'RGB', 'GRAY', 'HSV', 'YCrCb', 'HLS', 'XYZ', 'LAB', 'YUV'] 
images = [img_BGR, img_RGB, img_GRAY, img_HSV, img_YCrCb,
 img_HLS, img_XYZ, img_LAB, img_YUV] 
for i in xrange(9): 
 plt.subplot(3, 3, i+1), plt.imshow(images[i], 'gray') 
 plt.title(titles[i]) 
 plt.xticks([]),plt.yticks([]) 
plt.show()

其运行结果如图所示:

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

三.基于像素操作的图像灰度化处理

前面讲述了调用OpenCV中cvtColor()函数实现图像灰度化的处理,接下来讲解基于像素操作的图像灰度化处理方法,主要是最大值灰度处理、平均灰度处理和加权平均灰度处理方法。

1.最大值灰度处理方法

该方法的灰度值等于彩色图像R、G、B三个分量中的最大值,公式如下:

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

其方法灰度化处理后的灰度图亮度很高,实现代码如下。

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#获取图像高度和宽度
height = img.shape[0]
width = img.shape[1]
#创建一幅图像
grayimg = np.zeros((height, width, 3), np.uint8)
#图像最大值灰度处理
for i in range(height):
 for j in range(width):
 #获取图像R G B最大值
        gray = max(img[i,j][0], img[i,j][1], img[i,j][2])
 #灰度图像素赋值 gray=max(R,G,B)
 grayimg[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("src", img)
cv2.imshow("gray", grayimg)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示,其处理效果的灰度偏亮。

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

2.平均灰度处理方法

该方法的灰度值等于彩色图像R、G、B三个分量灰度值的求和平均值,其计算公式如下所示:

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

平均灰度处理方法实现代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#获取图像高度和宽度
height = img.shape[0]
width = img.shape[1]
#创建一幅图像
grayimg = np.zeros((height, width, 3), np.uint8)
print grayimg
#图像平均灰度处理方法
for i in range(height):
 for j in range(width):
 #灰度值为RGB三个分量的平均值
        gray = (int(img[i,j][0]) + int(img[i,j][1]) + int(img[i,j][2])) / 3
 grayimg[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("src", img)
cv2.imshow("gray", grayimg)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示:

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

3.加权平均灰度处理方法

该方法根据色彩重要性,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对蓝色敏感最低,因此,按下式对RGB三分量进行加权平均能得到较合理的灰度图像。

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

加权平均灰度处理方法实现代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#获取图像高度和宽度
height = img.shape[0]
width = img.shape[1]
#创建一幅图像
grayimg = np.zeros((height, width, 3), np.uint8)
print grayimg
#图像平均灰度处理方法
for i in range(height):
 for j in range(width):
 #灰度加权平均法
        gray = 0.30 * img[i,j][0] + 0.59 * img[i,j][1] + 0.11 * img[i,j][2]
 grayimg[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("src", img)
cv2.imshow("gray", grayimg)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示:

Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

参考文献:

该系列在github所有源代码:

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python图像处理丨基于OpenCV和像素处理的图像灰度化处理 - Python技术站

(0)
上一篇 2023年4月2日
下一篇 2023年4月2日

相关文章

  • 华为云新一代iPaaS全域融合集成平台全新升级

    摘要:基于华为十多年的数字化转型实践,华为云通过组装式交付、数智驱动、DevOps、服务化架构、安全可信、韧性6大关键技术助力客户实现应用现代化和高质量增长,华为云新一代iPaaS全域融合集成平台ROMA Connect也应运而生。 本文分享自华为云社区《华为云新一代iPaaS全域融合集成平台全新升级!》,作者:华为云头条。 数字化浪潮席卷,未来每一家企业都…

    云计算 2023年4月18日
    00
  • Python从0到1丨细说图像增强及运算

    摘要:本文主要讲解常见的图像锐化和边缘检测方法,即Roberts算子和Prewitt算子。 本文分享自华为云社区《[Python从零到壹] 五十七.图像增强及运算篇之图像锐化Roberts、Prewitt算子实现边缘检测》,作者: eastmount。 一.图像锐化 由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存…

    2023年3月31日
    00
  • 掌握动态规划,从“什么问题适合用”及“解题思路”入手

    摘要:一般是用动态规划来解决最优问题。 本文分享自华为云社区《深入浅出动态规划算法(中)》,作者:嵌入式视觉 。 一,“一个模型三个特征”理论讲解 一个模型指的是适合用动态规划算法解决的问题的模型,这个模型也被定义为“多阶段决策最优解模型”。具体解释如下: 一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。…

    人工智能概论 2023年4月24日
    00
  • 工业互联网:加速从“中国制造”迈向“中国智造”

    摘要:在推进制造业智能化的过程中,除设备本身数字化外,基于工业互联网实现设备互联和全流程智能化已成为最重要方向之一。 本文分享自华为云社区《【华为云Stack】【大架光临】第18期:工业互联网:加速从“中国制造”迈向“中国智造”》,作者:华为云Stack 制造行业总经理 崔新。 随着全球数字化浪潮的到来,中国制造业也在快速转型。国家“十一五”和“十二五”提出…

    云计算 2023年5月4日
    00
  • 【一行代码秒上云】Serverless六步构建全栈网站

    摘要:Serverless怎么玩?听一千道一万不如亲手来实践,跟着我们以华为云Serverless实践FunctionGraph来免费体验一下六步构建全栈网站吧 前言: Serverless怎么玩?听一千道一万不如亲手来实践,跟着我们以华为云Serverless实践FunctionGraph来免费体验一下六步构建全栈网站吧!五分钟就完成的应用上云,你值得拥有…

    云计算 2023年4月17日
    00
  • GaussDB(DWS)网络流控与管控效果

    摘要:本文主要介绍GaussDB(DWS)网络流控能力,并对其管控效果进行验证。 本文分享自华为云社区《GaussDB(DWS)网络流控与管控效果》,作者:门前一棵葡萄树。 上一篇博文GaussDB(DWS)网络调度与隔离管控能力,我们详细介绍了GaussDB网络调度逻辑,并简单介绍了如何应用网络隔离管控能力。本篇博文主要介绍GaussDB(DWS)网络流控…

    MySQL 2023年5月5日
    00
  • 华为云数据库首席专家谈分布式数据应用挑战和发展建议

    摘要:本文分析了分布式数据库发展情况、分布式数据库应用的主要问题,从行业应用的角度给出了分布式数据库发展的建议。 本文分享自华为云社区《数字化转型下我国分布式数据库应用挑战及发展建议》,作者:数据库领域科学家、华为云数据库GaussDB首席专家 冯柯。 当前,金融等重点行业都在进行数字化转型,而分布式数据库作为数据承载工具,为数字化转型提供了有力的支撑。分布…

    MySQL 2023年5月9日
    00
  • 4种API性能恶化根因分析

    摘要:服务发生性能恶化时,需要投入大量人力分析性能异常根因,分析成本高,耗时长。我们提出了一种先在异常调用链内部分析候选根因,再在全局拓扑环境下对候选根因进行汇聚的二级分析方法,克服了调用链之间异常相互影响导致根因难以确定的问题,快速识别和定位恶化接口的根因。 本文分享自华为云社区《【AIOps专题】API性能恶化根因分析》,作者:DevAI。 背景介绍 当…

    云计算 2023年4月17日
    00
合作推广
合作推广
分享本页
返回顶部