用Python制作销售数据可视化看板,展示分析一步到位

前言

在数据时代,销售数据分析的重要性已无需赘言。

只有对销售数据的准确分析我们才有可能找准数据变动(增长或下滑)的原因。

然后解决问题、发现新的增长点才会成为可能!

今天就给大家介绍一个用Python制作销售数据大屏的方法。

主要使用Python的Streamlit库、Plotly库、Pandas库进行搭建。

在这里插入图片描述

其中Pandas处理数据,Plotly制作可视化图表,Streamlit搭建可视化页面。

对于以上三个库,Streamlit库可能大家会比较陌生,我简单介绍一下。

Streamlit是一个完全免费的开源应用程序框架,它能帮你不用懂得复杂的HTML,CSS等前端技术就能

快速做出来一个炫酷的Web页面。

在这里插入图片描述

标题文档地址

https://docs.streamlit.io/

 

具体的大家可以去看文档学习,多动手练习。

下面就给大家讲解一下如何搭建销售数据看板~

01. 数据

使用的数据是虚构数据,某超市2021年销售订单数据,共有1000条的订单数据。

在这里插入图片描述

城市有三个,分别为北京、上海、杭州。顾客类型有两种,为会员和普通。顾客性别为男性和女性。

剩下还包含订单编号、商品类型、单价、数量、总价、日期、时间、支付方式、成本、毛利率、总收入、评分等信息。

通用Pandas的read_excel方法读取数据。

跳过前3行,选取B到R列,1000行数据。
在这里插入图片描述

python学习交流Q群:906715085###
def get_data_from_excel():
    df = pd.read_excel(
        io="supermarkt_sales.xlsx",
        engine="openpyxl",
        sheet_name="Sales",
        skiprows=3,
        usecols="B:R",
        nrows=1000,
    )
    # 添加小时列数据
    df["小时"] = pd.to_datetime(df["时间"], format="%H:%M:%S").dt.hour
    return df

df = get_data_from_excel()
print(df)

 

成功读取数据,结果如下。

在这里插入图片描述

下面便可以来编写页面了。

02. 网页标题和图标

我们都知道当浏览器打开一个网页,会有标题和图标。

在这里插入图片描述

所以我们需先设置本次网页的名称、图标、布局等。

这也是使用Streamlit搭建页面,使用的第一个Streamlit命令,并且只能设置一次。

# 设置网页信息 
st.set_page_config(page_title="销售数据大屏", page_icon=":bar_chart:", layout="wide")

 

其中page_icon参数可以使用表情符号代码来显示图标。

在这里插入图片描述

短代码可从下方链接获取。

https://www.webfx.com/tools/emoji-cheat-sheet/

 

在这里插入图片描述

妥妥的表情符号代码大全!

03. 侧边栏和多选框

st.sidebar(侧边栏),每个传递给st.sidebar的元素都会被固定在左边,让用户可以专注于主页中的内容。

multiselect(多选框)是一个交互性的部件,可以通过它进行数据筛选。

python学习交流Q群:906715085####
# 侧边栏
st.sidebar.header("请在这里筛选:")
city = st.sidebar.multiselect(
    "选择城市:",
    options=df["城市"].unique(),
    default=df["城市"].unique()
)

customer_type = st.sidebar.multiselect(
    "选择顾客类型:",
    options=df["顾客类型"].unique(),
    default=df["顾客类型"].unique(),
)

gender = st.sidebar.multiselect(
    "选择性别:",
    options=df["性别"].unique(),
    default=df["性别"].unique()
)

df_selection = df.query(
    "城市 == @city & 顾客类型 ==@customer_type & 性别 == @gender"
)

 

结合Pandas的query查询,就能对数据进行过滤。

在这里插入图片描述

通过上述代码就搭建成功了,如下图左侧。

在这里插入图片描述

点击侧边栏的右上角关闭符号,侧边栏即可隐藏。

网页将会展示主页面。

在这里插入图片描述

04. 主页面信息

接下来编写主页面信息,包含主页标题、销售总额、平均评分、平均销售额信息。

和网页的图标一样,通过表情符号代码实现。

# 主页面
st.title(":bar_chart: 销售数据大屏")
st.markdown("##")

# 核心指标, 销售总额、平均评分、星级、平均销售额数据
total_sales = int(df_selection["总价"].sum())
average_rating = round(df_selection["评分"].mean(), 1)
star_rating = ":star:" * int(round(average_rating, 0))
average_sale_by_transaction = round(df_selection["总价"].mean(), 2)


# 3列布局
left_column, middle_column, right_column = st.columns(3)

# 添加相关信息
with left_column:
    st.subheader("销售总额:")
    st.subheader(f"RMB {total_sales:,}")
with middle_column:
    st.subheader("平均评分:")
    st.subheader(f"{average_rating} {star_rating}")
with right_column:
    st.subheader("平均销售额:")
    st.subheader(f"RMB {average_sale_by_transaction}")

# 分隔符
st.markdown("""---""")

 

完成核心指标数据的处理,并将其进行布局显示。

在这里插入图片描述
在这里插入图片描述

05. 主页面图表

包含了两个图表,一个是每小时销售额,一个是各类商品销售总额。通过Plotly Express完成图表的绘制。

Plotly Express是一个新的高级Python可视化库,是Plotly.py的高级封装,它为复杂的图表提供了一个简单的语法。

文档地址

https://plot.ly/python/plotly-express/

 

受Seaborn和ggplot2的启发,它专门设计为具有简洁,一致且易于学习的API。只需一次导入,就可以在一个函数调用中创建丰富

的交互式绘图。

python学习交流Q群:906715085###
# 各类商品销售情况(柱状图)
sales_by_product_line = (
    df_selection.groupby(by=["商品类型"]).sum()[["总价"]].sort_values(by="总价")
)
fig_product_sales = px.bar(
    sales_by_product_line,
    x="总价",
    y=sales_by_product_line.index,
    orientation="h",
    title="<b>每种商品销售总额</b>",
    color_discrete_sequence=["#0083B8"] * len(sales_by_product_line),
    template="plotly_white",
)
fig_product_sales.update_layout(
    plot_bgcolor="rgba(0,0,0,0)",
    xaxis=(dict(showgrid=False))
)

# 每小时销售情况(柱状图)
sales_by_hour = df_selection.groupby(by=["小时"]).sum()[["总价"]]
print(sales_by_hour.index)
fig_hourly_sales = px.bar(
    sales_by_hour,
    x=sales_by_hour.index,
    y="总价",
    title="<b>每小时销售总额</b>",
    color_discrete_sequence=["#0083B8"] * len(sales_by_hour),
    template="plotly_white",
)
fig_hourly_sales.update_layout(
    xaxis=dict(tickmode="linear"),
    plot_bgcolor="rgba(0,0,0,0)",
    yaxis=(dict(showgrid=False)),
)


left_column, right_column = st.columns(2)
left_column.plotly_chart(fig_hourly_sales, use_container_width=True)
right_column.plotly_chart(fig_product_sales, use_container_width=True)

 

添加数据,设置图表配置,以及网页布局。

得到结果如下。

在这里插入图片描述

06. 隐藏部件

当我们通过Streamlit搭建一个界面,默认就会有红线、菜单、结尾的"Make with Streamlit"。

在这里插入图片描述

为了美观,这里可以将它们都隐藏掉。

# 隐藏streamlit默认格式信息
hide_st_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            header {visibility: hidden;}
            </style>
            """

st.markdown(hide_st_style, unsafe_allow_html=True)

 

这样一个可交互的销售数据看板,就完成搭建啦!

# 安装依赖库
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple plotly==4.14.3
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas==1.1.0
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit==0.86.0
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple openpyxl==3.0.6

# 运行
streamlit run app.py

 

安装相关依赖,命令行终端运行程序。

最后

今天的分享到这里就结束了,明天想要看什么呢?可以私信我留言哟!!!砸门下一篇见…

在这里插入图片描述

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:用Python制作销售数据可视化看板,展示分析一步到位 - Python技术站

(0)
上一篇 2023年4月2日
下一篇 2023年4月2日

相关文章

  • 5个节约生命的Python小技巧

    前言 Python是一种强大且易上手的语言,语法简洁优雅,不像Java那么繁琐废话,并且有一些特殊的函数或语法可以让代码变得更加 简短精悍。根据我的经验,下面介绍常用的5个Python小技巧: •字符串操作 •列表推导 •lambda 及 map() 函数 •if、elif和else单行表达式 •zip()函数 1.字符串操作 ###python#### p…

    Python开发 2023年4月2日
    00
  • 70 行 Python 代码写春联,行书隶书楷书随你选

    前言 相信现在有很多小伙伴都不会写毛笔字了,今天想用python来写一幅春联,不知道有没有人喜欢。该文用的是田英章老师的楷 书,我在网上总共找到了1600个汉字,因此,春联用字被限制在这1600个汉字的小字库中。我个人精力有限,同时受知识产权保 护的限制,不可能制作完整的毛笔字库。那么,能否借用现有的矢量字库,满足朋友们的要求呢?经过一番尝试,发现操作系统 …

    Python开发 2023年4月2日
    00
  • Python—-异常处理、断言和路径处理,简单、清晰版

    1.路径处理 1.找模块:sys.path import sys print(sys.path)   – 1.理解 – 1.是python去查找包或模块 – 2.项目开始根目录,python内置的目录 – 3.虽然说python的安装目录下也可以存放我们写的模块,但是不建议(太多了,不大好找) – 4.如果以后你发现模块导入不了了 ,可以使用下sys.pat…

    Python开发 2023年4月2日
    00
  • 上班用Python采集热搜榜,堪称摸鱼神器

    前言 不知道大家在工作无聊时,有没有一种冲动:总想掏出手机,看看微博热搜在讨论什么有趣的话题,但又不方便直接打开微博浏 览,今天就和大家分享一个有趣的小爬虫,定时采集微博热搜榜&热评,下面让我们来看看具体的实现方法。 页面分析 热搜页 热榜首页:https://s.weibo.com/top/summary?cate=realtimehot   热榜…

    Python开发 2023年4月2日
    00
  • 【Python】爱不释手的弹球小游戏

    前言 周末到了,不想给大家太多的压力,今天就给大家分享一个比较简单的弹球小游戏吧。这无聊的周末又有事可以做了,nice… 先看一下我们的最终效果图 我们分9步来讲解如何写这个小游戏 1.创建游戏的主界面 我们用Python的内置模块Tkinter来完成了,它是Python的标准GUI工具包,可以非常方便在制作GUI小工具,因为是跨平台的,可以方便的在 win…

    Python开发 2023年4月2日
    00
  • 【Python】控制结构,这个教程一般人我不给

    前言 还有多少人不会python的控制结构,在评论区告诉我,让我一个个点名提问。今天,就教会你python的控制结构… 分行与缩进 分行 •一条语句占用一行 •过长的语句可以占用多行,使用\或()控制换行 •[]、{}、()可以直接跨越多行,在列表、字典、元组中需要换行的时候也可以不用添加续行符 a = 1 b = 2 c =a +b income = (g…

    Python开发 2023年4月2日
    00
  • Python量化交易之预测茅台股票涨跌

    前言 本文摘自清华大学出版《深入浅出Python量化交易实战》一书的读书笔记,这里把作者用KNN模式做的交易策略,换成了逻辑回归模型,试 试看策略的业绩会有怎样的变化。 二话不说,上梯子,导库拉数据: Python学习交流Q群:906715085### import pandas as pd import pandas_datareader.data as …

    Python开发 2023年4月2日
    00
  • 用Python制作爆款视频,太绝了

    前言 前几天小编在抖音上刷到一个慢慢变老的视频,播放量居然有 30W+,当时就在想这视频 Python 可不可以做?经过一番搜索,小编找到了 腾讯云的人脸年龄变化 API,上面介绍说只要用户上传一张人脸图片,基于人脸编辑与生成算法,就可以输出一张人脸变老或变年轻的图 片,并支持实现人脸不同年龄的变化。 准备工作 获取 API 秘钥 第一步,在注册账号之后,打…

    Python开发 2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部