使用OpenCV作图像检测, Adaboost+haar决策过程,其中一部分源代码如下:
函数调用堆栈的底层为:
1、使用有序决策桩进行预测
template<class FEval> inline int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &_featureEvaluator, double& sum ) { int nodeOfs = 0, leafOfs = 0; FEval& featureEvaluator = (FEval&)*_featureEvaluator; float* cascadeLeaves = &cascade.data.leaves[0]; CascadeClassifier::Data::DTreeNode* cascadeNodes = &cascade.data.nodes[0]; CascadeClassifier::Data::Stage* cascadeStages = &cascade.data.stages[0]; //每一层进行计算,第一次训练为19层 nstages=19 // int nstages = (int)cascade.data.stages.size(); for( int stageIdx = 0; stageIdx < nstages; stageIdx++ ) { CascadeClassifier::Data::Stage& stage = cascadeStages[stageIdx]; sum = 0.0; //每一层树的个数 int ntrees = stage.ntrees; for( int i = 0; i < ntrees; i++, nodeOfs++, leafOfs+= 2 ) { CascadeClassifier::Data::DTreeNode& node = cascadeNodes[nodeOfs]; //收集累积和//没有显示否定的特性? double value = featureEvaluator(node.featureIdx); sum += cascadeLeaves[ value < node.threshold ? leafOfs : leafOfs + 1 ]; } if( sum < stage.threshold ) return -stageIdx; } return 1; }
2.上层调用:在某个点之处进行计算
int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& evaluator, Point pt, double& weight ) { CV_Assert( oldCascade.empty() ); assert( data.featureType == FeatureEvaluator::HAAR || data.featureType == FeatureEvaluator::LBP || data.featureType == FeatureEvaluator::HOG ); if( !evaluator->setWindow(pt) ) return -1; if( data.isStumpBased ) { //若使用haar特征,则进行haar检测过程 wishchin if( data.featureType == FeatureEvaluator::HAAR ) return predictOrderedStump<HaarEvaluator>( *this, evaluator, weight ); else if( data.featureType == FeatureEvaluator::LBP ) return predictCategoricalStump<LBPEvaluator>( *this, evaluator, weight ); else if( data.featureType == FeatureEvaluator::HOG ) return predictOrderedStump<HOGEvaluator>( *this, evaluator, weight ); else return -2; } else { if( data.featureType == FeatureEvaluator::HAAR ) return predictOrdered<HaarEvaluator>( *this, evaluator, weight ); else if( data.featureType == FeatureEvaluator::LBP ) return predictCategorical<LBPEvaluator>( *this, evaluator, weight ); else if( data.featureType == FeatureEvaluator::HOG ) return predictOrdered<HOGEvaluator>( *this, evaluator, weight ); else return -2; } }
3. CascadeClassifierInvoker初始化时产生的 CascadeClassifier,
其中 每个inVoker继承于并行循环的body:例如 class CascadeClassifier : public ParallelLoopBody,完成并行计算过程
其初始化过程,完成检测。
void operator()(const Range& range) const { Ptr<FeatureEvaluator> evaluator = classifier->featureEvaluator->clone(); Size winSize(cvRound(classifier->data.origWinSize.width * scalingFactor), cvRound(classifier->data.origWinSize.height * scalingFactor)); int y1 = range.start * stripSize; int y2 = min(range.end * stripSize, processingRectSize.height); for( int y = y1; y < y2; y += yStep ) { for( int x = 0; x < processingRectSize.width; x += yStep ) { if ( (!mask.empty()) && (mask.at<uchar>(Point(x,y))==0)) { continue; } double gypWeight; //作为起始点检测图像是否为目标!!! wishchin 2017 03 20 int result = classifier->runAt(evaluator, Point(x, y), gypWeight); #if defined (LOG_CASCADE_STATISTIC) logger.setPoint(Point(x, y), result); #endif if( rejectLevels ) { if( result == 1 ) result = -(int)classifier->data.stages.size(); if( classifier->data.stages.size() + result < 4 ) { mtx->lock(); rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height)); rejectLevels->push_back(-result); levelWeights->push_back(gypWeight); mtx->unlock(); } } else if( result > 0 ) { mtx->lock(); rectangles->push_back(Rect(cvRound(x*scalingFactor), cvRound(y*scalingFactor), winSize.width, winSize.height)); mtx->unlock(); } if( result == 0 ) x += yStep; } } } CascadeClassifier* classifier; vector<Rect>* rectangles; Size processingRectSize; int stripSize, yStep; double scalingFactor; vector<int> *rejectLevels; vector<double> *levelWeights; Mat mask; Mutex* mtx; };
4.使用多尺度计算过程,对每一层进行单层结果计算
bool CascadeClassifier::detectSingleScale( const Mat& image, int stripCount, Size processingRectSize, int stripSize, int yStep, double factor, vector<Rect>& candidates, vector<int>& levels, vector<double>& weights, bool outputRejectLevels ) { if( !featureEvaluator->setImage( image, data.origWinSize ) ) return false; #if defined (LOG_CASCADE_STATISTIC) logger.setImage(image); #endif Mat currentMask; if (!maskGenerator.empty()) { currentMask=maskGenerator->generateMask(image); } vector<Rect> candidatesVector; vector<int> rejectLevels; vector<double> levelWeights; Mutex mtx; if( outputRejectLevels ) { parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor, candidatesVector, rejectLevels, levelWeights, true, currentMask, &mtx)); levels.insert( levels.end(), rejectLevels.begin(), rejectLevels.end() ); weights.insert( weights.end(), levelWeights.begin(), levelWeights.end() ); } else { //并行处理过程,对每一层初始化一个CascadeClassifierInvoker,完成计算 parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor, candidatesVector, rejectLevels, levelWeights, false, currentMask, &mtx)); } candidates.insert( candidates.end(), candidatesVector.begin(), candidatesVector.end() ); #if defined (LOG_CASCADE_STATISTIC) logger.write(); #endif return true; }
5. 进行多尺度检测
void CascadeClassifier::detectMultiScale( const Mat& image, vector<Rect>& objects, vector<int>& rejectLevels, vector<double>& levelWeights, double scaleFactor, int minNeighbors, int flags, Size minObjectSize, Size maxObjectSize, bool outputRejectLevels ) { const double GROUP_EPS = 0.2; CV_Assert( scaleFactor > 1 && image.depth() == CV_8U ); if( empty() ) return; if( isOldFormatCascade() ) { MemStorage storage(cvCreateMemStorage(0)); CvMat _image = image; CvSeq* _objects = cvHaarDetectObjectsForROC( &_image, oldCascade, storage, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minObjectSize, maxObjectSize, outputRejectLevels ); vector<CvAvgComp> vecAvgComp; Seq<CvAvgComp>(_objects).copyTo(vecAvgComp); objects.resize(vecAvgComp.size()); std::transform(vecAvgComp.begin(), vecAvgComp.end(), objects.begin(), getRect()); return; } objects.clear(); if (!maskGenerator.empty()) { maskGenerator->initializeMask(image); } if( maxObjectSize.height == 0 || maxObjectSize.width == 0 ) maxObjectSize = image.size(); Mat grayImage = image; if( grayImage.channels() > 1 ) { Mat temp; cvtColor(grayImage, temp, CV_BGR2GRAY); grayImage = temp; } Mat imageBuffer(image.rows + 1, image.cols + 1, CV_8U); vector<Rect> candidates; for( double factor = 1; ; factor *= scaleFactor ) { Size originalWindowSize = getOriginalWindowSize(); Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) ); Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) ); Size processingRectSize( scaledImageSize.width - originalWindowSize.width, scaledImageSize.height - originalWindowSize.height ); if( processingRectSize.width <= 0 || processingRectSize.height <= 0 ) break; if( windowSize.width > maxObjectSize.width || windowSize.height > maxObjectSize.height ) break; if( windowSize.width < minObjectSize.width || windowSize.height < minObjectSize.height ) continue; Mat scaledImage( scaledImageSize, CV_8U, imageBuffer.data ); resize( grayImage, scaledImage, scaledImageSize, 0, 0, CV_INTER_LINEAR ); int yStep; if( getFeatureType() == cv::FeatureEvaluator::HOG ) { yStep = 4; } else { yStep = factor > 2. ? 1 : 2; } int stripCount, stripSize; const int PTS_PER_THREAD = 1000; stripCount = ((processingRectSize.width/yStep)*(processingRectSize.height + yStep-1)/yStep + PTS_PER_THREAD/2)/PTS_PER_THREAD; stripCount = std::min(std::max(stripCount, 1), 100); stripSize = (((processingRectSize.height + stripCount - 1)/stripCount + yStep-1)/yStep)*yStep; //对每一个尺度进行目标检测 wishchin 2017 03 21 if( !detectSingleScale( scaledImage, stripCount, processingRectSize, stripSize, yStep, factor, candidates, rejectLevels, levelWeights, outputRejectLevels ) ) break; } objects.resize(candidates.size()); std::copy(candidates.begin(), candidates.end(), objects.begin()); if( outputRejectLevels ) { groupRectangles( objects, rejectLevels, levelWeights, minNeighbors, GROUP_EPS ); } else { groupRectangles( objects, minNeighbors, GROUP_EPS ); } }
以上为objectDetect过程的OpenCV的源代码,外层调用的使用函数接口可以为:
// 人眼检测 m_cascade.detectMultiScale( smallImg, eyes, fAdaBoostScale, // originally 1.1, 4 is faster 2, //minNeighbors //|CV_HAAR_FIND_BIGGEST_OBJECT //|CV_HAAR_DO_ROUGH_SEARCH CV_HAAR_DO_CANNY_PRUNING, Size(48, 32) ); //cout << "eyes size=:" << eyes.size() << endl;
总结:
上述过程即是Haar+Adaboost检测计算大致的函数调用堆栈。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:OpenCV:OpenCV目标检测Adaboost+haar源代码分析 - Python技术站