pytorch1.0中torch.nn.Conv2d用法详解

torch.nn.Conv2d是PyTorch中用于实现二维卷积操作的类。在本文中,我们将详细介绍torch.nn.Conv2d的用法,并提供两个示例。

1. torch.nn.Conv2d的参数

torch.nn.Conv2d的参数如下:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

其中:

  • in_channels:输入通道数。
  • out_channels:输出通道数。
  • kernel_size:卷积核大小。
  • stride:步长大小。
  • padding:填充大小。
  • dilation:膨胀率。
  • groups:分组卷积数。
  • bias:是否使用偏置。

2. torch.nn.Conv2d的使用

以下是一个使用torch.nn.Conv2d进行图像卷积的示例:

import torch
import torch.nn as nn

# 定义输入
x = torch.randn(1, 3, 32, 32)

# 定义卷积层
conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)

# 进行卷积操作
out = conv(x)

# 输出结果
print(out.shape)

在这个示例中,我们首先定义了一个名为x的输入张量,它的大小为[1, 3, 32, 32]。然后,我们定义了一个名为conv的卷积层,它有3个输入通道,16个输出通道,卷积核大小为3,步长为1,填充大小为1。最后,我们使用convx进行卷积操作,并输出结果的大小。

以下是一个使用torch.nn.Conv2d进行图像分类的示例:

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms

# 加载数据集
train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor())

# 加载数据集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, kernel_size=5, padding=2)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
        self.fc1 = nn.Linear(7*7*64, 1024)
        self.fc2 = nn.Linear(1024, 10)

    def forward(self, x):
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 7*7*64)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.dropout(x, training=self.training)
        x = self.fc2(x)
        return nn.functional.log_softmax(x, dim=1)

model = Net()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# 训练模型
for epoch in range(10):
    for i, (images, labels) in enumerate(train_loader):
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, len(train_loader), loss.item()))

# 测试模型
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

在这个示例中,我们首先加载了MNIST数据集。然后,我们定义了一个名为Net的卷积神经网络模型,它包含两个卷积层和两个全连接层。然后,我们定义了一个名为criterion的损失函数和一个名为optimizer的优化器。然后,我们使用训练数据对模型进行了训练,并在每个epoch结束时输出损失值。最后,我们使用测试数据对模型进行了测试,并输出了模型的准确率。

结论

在本文中,我们详细介绍了torch.nn.Conv2d的用法,并提供了两个示例。如果您按照这些说明进行操作,您应该能够成功使用torch.nn.Conv2d实现卷积操作和图像分类。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch1.0中torch.nn.Conv2d用法详解 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • pytorch模型的保存和加载、checkpoint操作

    PyTorch是一个非常流行的深度学习框架,它提供了丰富的工具和库来帮助我们进行深度学习任务。在本文中,我们将介绍如何保存和加载PyTorch模型,以及如何使用checkpoint操作来保存和恢复模型的状态。 PyTorch模型的保存和加载 在PyTorch中,我们可以使用torch.save和torch.load函数来保存和加载PyTorch模型。torc…

    PyTorch 2023年5月16日
    00
  • 基于Pytorch实现逻辑回归

    基于PyTorch实现逻辑回归 逻辑回归是一种常用的分类算法,它可以用于二分类和多分类问题。在本文中,我们将介绍如何使用PyTorch实现逻辑回归,并提供两个示例说明。 示例1:使用鸢尾花数据集实现二分类逻辑回归 以下是一个使用鸢尾花数据集实现二分类逻辑回归的示例代码: import torch import torch.nn as nn import to…

    PyTorch 2023年5月16日
    00
  • pytorch实现focal loss的两种方式小结

    PyTorch是一个流行的深度学习框架,它提供了许多内置的损失函数,如交叉熵损失函数。然而,对于一些特定的任务,如不平衡数据集的分类问题,交叉熵损失函数可能不是最佳选择。这时,我们可以使用Focal Loss来解决这个问题。本文将介绍两种PyTorch实现Focal Loss的方式。 方式一:手动实现Focal Loss Focal Loss是一种针对不平衡…

    PyTorch 2023年5月15日
    00
  • Pytorch Tensor 常用操作

    https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor,而且这种类型的别名也可以写作torch.Tensor。   device: 这个参数表示了tensor将会在哪个设备上分配内存。它包含了设备的类型(cpu、cu…

    2023年4月6日
    00
  • pytorch children和modules

    参考1参考2官方论坛讨论 children: 只包括网络的第一级孩子,不包括孩子的孩子modules: 深度优先遍历,先输出孩子,再输出孩子的孩子,孩子的孩子的孩子。。。 children的用法:加载预训练模型 resnet = models.resnet50(pretrained=True) modules = list(resnet.children()…

    PyTorch 2023年4月8日
    00
  • pytorch: cudnn.benchmark=True

    import torch.backends.cudnn as cudnn cudnn.benchmark = True 设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题。如果网络的输入数据维度或类型上变化不大,也就是每次训练的图像尺寸都是一样的时候,设置 torch.backe…

    PyTorch 2023年4月8日
    00
  • PyTorch 之 Datasets

    实现一个定制的 Dataset 类 Dataset 类是 PyTorch 图像数据集中最为重要的一个类,也是 PyTorch 中所有数据集加载类中应该继承的父类。其中,父类的两个私有成员函数必须被重载。 getitem(self, index) # 支持数据集索引的函数 len(self) # 返回数据集的大小 Datasets 的框架: class Cus…

    PyTorch 2023年4月8日
    00
  • 详解Pytorch如何利用yaml定义卷积网络

    在PyTorch中,我们可以使用YAML文件来定义卷积神经网络。YAML是一种轻量级的数据序列化格式,它可以方便地定义复杂的数据结构。本文将介绍如何使用YAML文件来定义卷积神经网络,并提供两个示例。 安装PyYAML 在使用YAML文件定义卷积神经网络之前,我们需要安装PyYAML库。可以使用以下命令来安装PyYAML: pip install pyyam…

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部