要限制TensorFlow Python程序对GPU和CPU的占用操作,可以使用TensorFlow的tf.config
模块中的experimental
API。以下是详细步骤:
步骤一:导入依赖库
首先需要导入TensorFlow和其他依赖库:
import tensorflow as tf
import os
步骤二:设置GPU的内存增长
可以使用以下代码设置GPU的内存增长,以便能够更好地控制TensorFlow程序对GPU的占用:
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
步骤三:设置CPU和GPU的可见性
可以使用以下代码设置CPU和GPU的可见性,以便能够更好地控制TensorFlow程序对CPU和GPU的占用:
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 只使用第一张GPU
步骤四:限制CPU和GPU占用
可以使用以下代码限制TensorFlow程序对CPU和GPU的占用(本例中,CPU和GPU的占用被限制在20%以下):
# 设置CPU占用限制
config = tf.compat.v1.ConfigProto()
config_proto.InterOpParallelismThreads = 1
config_proto.IntraOpParallelismThreads = 1
os.environ["OMP_NUM_THREADS"] = str(1)
# 设置GPU占用限制
gpu_nums = str(len(tf.config.experimental.list_physical_devices('GPU')))
if gpu_nums == 1:
config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.gpu_options.allow_growth = True
else:
# 多卡
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 1. / gpu_nums * 0.2
session = tf.compat.v1.Session(config=config)
至此,限制TensorFlow Python程序对GPU和CPU的占用操作的攻略已经完成。
例如,下面是一个使用以上攻略的示例:
import tensorflow as tf
import os
# 步骤二:设置GPU的内存增长
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
# 步骤三:设置CPU和GPU的可见性
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 只使用第一张GPU
# 步骤四:限制CPU和GPU占用
config = tf.compat.v1.ConfigProto()
config_proto.InterOpParallelismThreads = 1
config_proto.IntraOpParallelismThreads = 1
os.environ["OMP_NUM_THREADS"] = str(1)
gpu_nums = str(len(tf.config.experimental.list_physical_devices('GPU')))
if gpu_nums == 1:
config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.gpu_options.allow_growth = True
else:
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 1. / gpu_nums * 0.2
session = tf.compat.v1.Session(config=config)
# 示例程序
x = tf.constant([1.0, 2.0, 3.0, 4.0])
y = tf.constant([4.0, 3.0, 2.0, 1.0])
z = tf.multiply(x, y)
with tf.compat.v1.Session() as sess:
output = sess.run(z)
print(output)
另外一个使用以上攻略的示例:
import tensorflow as tf
import os
# 步骤二:设置GPU的内存增长
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
# 步骤三:设置CPU和GPU的可见性
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 只使用第一张GPU
# 步骤四:限制CPU和GPU占用
config = tf.compat.v1.ConfigProto()
config_proto.InterOpParallelismThreads = 1
config_proto.IntraOpParallelismThreads = 1
os.environ["OMP_NUM_THREADS"] = str(1)
gpu_nums = str(len(tf.config.experimental.list_physical_devices('GPU')))
if gpu_nums == 1:
config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.gpu_options.allow_growth = True
else:
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 1. / gpu_nums * 0.2
session = tf.compat.v1.Session(config=config)
# 示例程序
a = tf.Variable(tf.constant(5.0, dtype=tf.float32), dtype=tf.float32, trainable=True)
b = tf.Variable(tf.constant(3.0, dtype=tf.float32), dtype=tf.float32, trainable=True)
c = tf.add(a, b)
init = tf.compat.v1.global_variables_initializer()
with tf.compat.v1.Session() as sess:
sess.run(init)
output = sess.run(c)
print(output)
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:运行tensorflow python程序,限制对GPU和CPU的占用操作 - Python技术站