pandas 读取各种格式文件的方法

当我们在数据分析的过程中,常常需要从各种各样的文件(CSV、Excel、SQL、JSON等)中读取数据。而在Python数据分析领域中,使用pandas库进行数据读取是非常常见的选择。本文将详细介绍pandas读取各种格式文件的方法,涵盖CSV、Excel、SQL、JSON等格式。

一、读取CSV文件

CSV文件是最常见的一种数据文件格式。读取CSV文件是pandas最常用的操作之一,它可以使用read_csv()函数来进行读取。

import pandas as pd

df = pd.read_csv('example.csv', header=None) # header=None表示文件没有列名

print(df.head())

上述代码中的df就是读取CSV文件的返回值,文件路径需要根据情况进行修改。read_csv()函数实际上返回的是一个DataFrame对象,我们在读取完成后便可以像操作普通pandas DataFrame一样进行数据操作。

二、读取Excel文件

pandas可以非常方便地读取Excel文件。需要知道的是,Excel文件有很多种格式(xls、xlsx、xlsm等),pandas支持这些格式的读取。首先需要安装openpyxl模块,它是pandas读取xlsx/xlsm格式文件的依赖包。

import pandas as pd

df = pd.read_excel('example.xlsx', sheet_name='Sheet1')

print(df.head())

上述代码中read_excel()函数读取了名为example.xlsx的Excel文件,并返回了Sheet1表单的全部内容。

三、读取SQL数据

pandas可以使用read_sql()函数来读取SQL数据。该函数需要MySQL Connector/Python或SQLite以及对应的驱动程序。首先需要使用Python连接到数据库,然后使用read_sql()函数读取SQL数据。

from sqlalchemy import create_engine
import pandas as pd

engine = create_engine('mysql://user:pass@localhost:3306/example')
df = pd.read_sql('SELECT * FROM table_name', con=engine)

print(df.head())

上述代码中使用了SQLAlchemy来创建一个MySQL连接对象engine,接着使用pandas的read_sql()函数从数据库中读取数据。读取完成后,我们可以对返回的DataFrame对象进行数据操作。

四、读取JSON数据

JSON格式的数据在Python分析中越来越常见,这也使pandas读取JSON文件的需求越来越重要。pandas提供了read_json()函数来读取JSON数据。

import pandas as pd

df = pd.read_json('example.json')

print(df.head())

上述代码中的df是读取example.json文件后返回的DataFrame对象,我们可以像平常一样对它进行数据操作。

五、读取HTML表格数据

对于从HTML文件读取表格数据,pandas同样可以完成这个任务。read_html()函数可以自动将HTML文件中的表格转化成DataFrame。

import pandas as pd

url = 'example.html'
dfs = pd.read_html(url)
df = dfs[0]

print(df.head())

这里同样是使用pd.read_html()从例子网页中读取HTML表格数据。需要注意的是,pd.read_html()返回的是一个包含DataFrame对象的list,我们需要根据HTML文件的具体情况选择并去除其中我们需要的DataFrame。

六、读取其他格式数据

pandas读取数据是一件非常方便的事情,它还可以读取其他许多格式的数据。例如:

import pandas as pd

df = pd.read_fwf('example.fwf') # 读取固定宽度格式的文件
df = pd.read_clipboard() # 从剪切板读取数据

通过这种方式,pandas可以读取几乎所有常见的数据文件格式。

希望这篇文章对读者能有所帮助,在数据分析过程中使用pandas更加得心应手。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas 读取各种格式文件的方法 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Pandas数据类型之category的用法

    下面是对“Pandas数据类型之category的用法”的详细讲解攻略。 什么是category类型 Pandas中的category数据类型,称为分类数据类型,是针对具有固定数量的不同值的数据进行有效管理的数据类型。在这种数据类型中,重复的数据仅保存一次。 方便快捷地对这种数据进行分组和排序。 在数据集中,用户的性别、部门、优先级、状态、等级和类型等属性通…

    python 2023年5月14日
    00
  • 如何在Pandas的数据透视表中包含百分比

    利用Pandas生成的数据透视表,我们可以方便地对数据进行分组、统计和分析。其中,包括了对每组数据的计数、求和等操作,但也可以计算每组数据的百分比。 下面是如何在 Pandas 的数据透视表中包含百分比的步骤: 在 DataFrame 中构建数据透视表 使用 Pandas 的 pivot_table 函数,可以快速创建数据透视表。在这里我们需要至少两个参数:…

    python-answer 2023年3月27日
    00
  • python删除指定列或多列单个或多个内容实例

    针对“python删除指定列或多列单个或多个内容实例”这个话题,我来给你详细讲解一下完整攻略。 1. 列表中删除指定元素 如果我们有一个列表,想要删除其中指定的元素,可以使用list.append()函数先将需要保留的元素添加到一个新的列表中,然后用新列表覆盖掉原列表。下面是一个例子: # 原始列表 my_list = [1, 2, 3, 4, 5, 6] …

    python 2023年6月13日
    00
  • pandas数据清洗,排序,索引设置,数据选取方法

    下面是“pandas数据清洗,排序,索引设置,数据选取方法”的完整攻略。 Pandas数据清洗 在Pandas中,我们常常需要对数据进行清洗,以提高数据质量和可用性。数据清洗的过程包括数据去重,缺失值处理,数据类型转换,字符串处理等。 数据去重 在Pandas中,可以使用drop_duplicates()方法去掉DataFrame中的重复记录。该方法默认以所…

    python 2023年5月14日
    00
  • Python Pandas中合并数据的5个函数使用详解

    下面我将详细讲解“Python Pandas中合并数据的5个函数使用详解”的完整攻略。 简介 在数据处理中,我们常常需要将不同来源的数据合并在一起,以方便分析和处理。在Python Pandas中,有很多种方法可以达到这个目的,其中比较常用的有以下5个函数: pd.concat() : 在行或列上拼接两个或多个DataFrame或Series df.appe…

    python 2023年5月14日
    00
  • 用二维列表制作Pandas DataFrame

    二维列表是制作Pandas DataFrame的一种方式,通过将二维列表转换为DataFrame,我们可以在Python中更方便地进行数据分析和处理。下面是用二维列表制作Pandas DataFrame的详细攻略。 准备工作 首先,我们需要导入Pandas库,以便在Python中使用它。导入Pandas的代码如下所示: import pandas as pd…

    python-answer 2023年3月27日
    00
  • 详解Pandas中的时间序列

    Pandas是一个强大的数据分析工具,它的时间序列处理功能也非常强大。Pandas提供了一些专门用于处理时间序列的数据类型和函数,能够方便地对时间序列数据进行处理和分析。 下面将详细介绍Pandas时间序列的相关知识。 DatetimeIndex 在Pandas中,DatetimeIndex是一个表示时间序列的数据类型,它能够方便地对时间序列进行索引和切片操…

    Pandas 2023年3月6日
    10
  • Pandas 读写json

    下面是详细讲解Pandas读写json的完整攻略: 准备工作 在使用Pandas读写json文件之前,需要确保已经安装了Pandas库以及相关的json库。可以使用以下命令来安装: pip install pandas pip install json 读取json文件 Pandas提供了read_json()方法来读取json文件。可以使用以下命令来读取j…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部