Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

摘要:本文主要介绍图像形态学处理,详细讲解了图像开运算、闭运算和梯度运算。数学形态学是一种应用于图像处理和模式识别领域的新方法,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别目的。

本文分享自华为云社区《[Python从零到壹] 四十八.图像增强及运算篇之形态学开运算、闭运算和梯度运算》,作者: eastmount 。

本文主要介绍图像形态学处理,详细讲解了图像开运算、闭运算和梯度运算。数学形态学是一种应用于图像处理和模式识别领域的新方法,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别目的。

一.图像开运算

开运算一般能平滑图像的轮廓,削弱狭窄部分,去掉较细的突出。闭运算也是平滑图像的轮廓,与开运算相反,它一般熔合窄的缺口和细长的弯口,去掉小洞,填补轮廓上的缝隙。图像开运算是图像依次经过腐蚀、膨胀处理的过程,图像被腐蚀后将去除噪声,但同时也压缩了图像,接着对腐蚀过的图像进行膨胀处理,可以在保留原有图像的基础上去除噪声。其原理如图1所示。

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

设A是原始图像,B是结构元素图像,则集合A被结构元素B做开运算,记为A◦B,其定义为:

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

换句话说,A被B开运算就是A被B腐蚀后的结果再被B膨胀。图像开运算在OpenCV中主要使用函数morphologyEx(),它是形态学扩展的一组函数,其函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)

  • src表示原始图像
  • cv2.MORPH_OPEN表示图像进行开运算处理
  • kernel表示卷积核,可以用numpy.ones()函数构建

图像开运算的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
#读取图片
src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((5,5), np.uint8)
#图像开运算
result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如图2所示,左边为原始图像,右边为处理后的图像,可以看到原始图形中的噪声点被去除了部分。

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

但处理后的图像中仍然有部分噪声,如果想更彻底地去除,可以将卷积设置为10×10的模板,代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
#读取图片
src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((10,10), np.uint8) 
#图像开运算
result = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果如图3所示:

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

二.图像闭运算

图像闭运算是图像依次经过膨胀、腐蚀处理的过程,先膨胀后腐蚀有助于过滤前景物体内部的小孔或物体上的小黑点。其原理如图4所示:

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

设A是原始图像,B是结构元素图像,则集合A被结构元素B做开运算,记为A·B,其定义为:

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

换句话说,A被B闭运算就是A被B膨胀后的结果再被B腐蚀。图像开运算在OpenCV中主要使用函数morphologyEx(),其函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)

  • src表示原始图像
  • cv2.MORPH_CLOSE表示图像进行闭运算处理
  • kernel表示卷积核,可以用numpy.ones()函数构建

图像开运算的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
#读取图片
src = cv2.imread('test02.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((10,10), np.uint8)
#图像闭运算
result = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如图5所示,它有效地去除了图像中间的小黑点(噪声)。

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

三.图像梯度运算

图像梯度运算是图像膨胀处理减去图像腐蚀处理后的结果,从而得到图像的轮廓,其原理如图6所示,(a)表示原始图像,(b)表示膨胀处理后的图像,(c)表示腐蚀处理后的图像,(d)表示图像梯度运算的效果图。

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

在Python中,图像梯度运算主要调用morphologyEx()实现,其中参数cv2.MORPH_GRADIENT表示梯度处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)

  • src表示原始图像
  • cv2.MORPH_GRADIENT表示图像进行梯度运算处理
  • kernel表示卷积核,可以用numpy.ones()函数构建

图像梯度运算的实现代码如下所示。

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
#读取图片
src = cv2.imread('test03.png', cv2.IMREAD_UNCHANGED)
#设置卷积核
kernel = np.ones((10,10), np.uint8)
#图像梯度运算
result = cv2.morphologyEx(src, cv2.MORPH_GRADIENT, kernel)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

图像梯度运算处理的结果如图7所示,左边为原始图像,右边为处理后的效果图。

Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算

四.总结

本文主要介绍图像形态学处理,详细讲解了图像开运算、闭运算和梯度运算。数学形态学是一种应用于图像处理和模式识别领域的新方法,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别目的。

参考文献:

  • [1]冈萨雷斯著,阮秋琦译. 数字图像处理(第3版)[M]. 北京:电子工业出版社,2013.
  • [2]阮秋琦. 数字图像处理学(第3版)[M]. 北京:电子工业出版社,2008.
  • [3]毛星云,冷雪飞. OpenCV3编程入门[M]. 北京:电子工业出版社,2015.
  • [4]Eastmount. [Python图像处理] 八.图像腐蚀与图像膨胀[EB/OL]. (2018-10-31). https://blog.csdn.net/Eastmount/article/details/83581277.

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python从0到1丨图像增强及运算:形态学开运算、闭运算和梯度运算 - Python技术站

(0)
上一篇 2023年3月31日
下一篇 2023年3月31日

相关文章

  • 云原生容器高可用运维能力应用

    摘要:华为云容器SRE在海量集群和容器运维实践中,从智能运维能力、确定性场景恢复等多方面总结出一套确定性运维实践,以应对云原生业务快速增长。 本文分享自华为云社区《云原生容器高可用运维能力应用》,作者:陈勇/刘志超/袁文峰。 云原生场景下,对架构高可用、应用高可用、基础云平台高可用提出了更高的要求,企业以及云平台都在不断致力于稳定性建设。但面对海量复杂的客户…

    云计算 2023年4月17日
    00
  • OpenTiny 跨端、跨框架组件库升级TypeScript,10万行代码重获新生

    摘要:一份精心准备的《JS项目改造TS指南》文档供大家参考,顺便介绍TS 基础知识和 TS 在 Vue 中的实践。 本文分享自华为云社区《历史性的时刻!OpenTiny 跨端、跨框架组件库正式升级 TypeScript,10 万行代码重获新生!》,作者:Kagol。 根据 The Software House 发布的《2022 前端开发市场状态调查报告》数据…

    JavaScript 2023年4月17日
    00
  • Istio数据面新模式:Ambient Mesh技术解析

    摘要:Ambient Mesh以一种更符合大规模落地要求的形态出现,克服了大多数Sidecar模式的固有缺陷,让用户无需再感知网格相关组件,真正将网格下沉为基础设施。 本文分享自华为云社区《华为云云原生团队:Istio数据面新模式 Ambient Mesh技术解析》,作者: 云容器大未来。 如果说在以Kubernetes为基础构建起的云原生世界里,哪种设计模…

    云计算 2023年5月6日
    00
  • Python图像处理丨图像的灰度线性变换

    摘要:本文主要讲解灰度线性变换。 本文分享自华为云社区《[Python图像处理] 十五.图像的灰度线性变换》,作者:eastmount。 一.图像灰度线性变换原理 图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。灰度线性变换的计算公式如下所示: 该公式中DB表示灰度线性变换后的灰度值,DA表示变…

    2023年4月2日
    00
  • Python图像处理丨详解图像去雾处理方法

    摘要:本文主要讲解ACE去雾算法、暗通道先验去雾算法以及雾化生成算法。 本文分享自华为云社区《[Python图像处理] 三十.图像预处理之图像去雾详解(ACE算法和暗通道先验去雾算法)丨【拜托了,物联网!】》,作者:eastmount 。 一.图像去雾 随着社会的发展,环境污染逐渐加剧,越来越多的城市频繁出现雾霾,这不仅给人们的身体健康带来危害,还给那些依赖…

    2023年4月2日
    00
  • 华为云新一代iPaaS全域融合集成平台全新升级

    摘要:基于华为十多年的数字化转型实践,华为云通过组装式交付、数智驱动、DevOps、服务化架构、安全可信、韧性6大关键技术助力客户实现应用现代化和高质量增长,华为云新一代iPaaS全域融合集成平台ROMA Connect也应运而生。 本文分享自华为云社区《华为云新一代iPaaS全域融合集成平台全新升级!》,作者:华为云头条。 数字化浪潮席卷,未来每一家企业都…

    云计算 2023年4月18日
    00
  • 分布式场景下,如何对外提供易变的服务,打造可靠的注册中心?

    摘要:本文讲了关于服务发现的很多干货内容,核心内容为服务发现组件的选择、网关的介绍、 客户端侧如何发给已发现的服务。 本文分享自华为云社区《分布式场景下,如何对外提供易变的服务,打造可靠的注册中心?》,作者:breakDawn。 随着云原生的概念越来越火,服务的架构应该如何发展和演进,成为很多程序员关心的话题。大名鼎鼎的《深入理解java虚拟机》一书作者于2…

    云计算 2023年5月6日
    00
  • 10分钟带你徒手做个Java线程池

    摘要:花10分钟开发一个极简版的Java线程池,让小伙伴们更好的理解线程池的核心原理。 本文分享自华为云社区《放大招了,冰河带你10分钟手撸Java线程池,yyds,赶快收藏吧》,作者:冰 河。 Java线程池核心原理 看过Java线程池源码的小伙伴都知道,在Java线程池中最核心的类就是ThreadPoolExecutor,而在ThreadPoolExec…

    Java 2023年4月19日
    00
合作推广
合作推广
分享本页
返回顶部