使用Pytorch来拟合函数方式

使用PyTorch来拟合函数的方式

在本文中,我们将介绍如何使用PyTorch来拟合函数。我们将提供两个示例,一个是使用线性函数,另一个是使用非线性函数。

示例1:使用线性函数

以下是使用PyTorch拟合线性函数的示例代码:

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Generate random data
np.random.seed(0)
x = np.linspace(-1, 1, 100)
y = 2 * x + np.random.randn(*x.shape) * 0.3

# Convert data to tensors
inputs = torch.from_numpy(x).float().view(-1, 1)
targets = torch.from_numpy(y).float().view(-1, 1)

# Define neural network model
model = nn.Sequential(
    nn.Linear(1, 1)
)

# Define loss function
criterion = nn.MSELoss()

# Define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
num_epochs = 1000
for epoch in range(num_epochs):
    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Print progress
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the results
predicted = model(inputs).detach().numpy()
plt.plot(x, y, 'ro', label='Original data')
plt.plot(x, predicted, label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们首先生成了一些随机数据。然后,我们将数据转换为PyTorch张量,并定义了一个名为model的神经网络模型。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们绘制了原始数据和拟合线。

示例2:使用非线性函数

以下是使用PyTorch拟合非线性函数的示例代码:

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Generate random data
np.random.seed(0)
x = np.linspace(-1, 1, 100)
y = np.sin(5 * np.pi * x) + np.random.randn(*x.shape) * 0.3

# Convert data to tensors
inputs = torch.from_numpy(x).float().view(-1, 1)
targets = torch.from_numpy(y).float().view(-1, 1)

# Define neural network model
model = nn.Sequential(
    nn.Linear(1, 10),
    nn.ReLU(),
    nn.Linear(10, 1)
)

# Define loss function
criterion = nn.MSELoss()

# Define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
num_epochs = 1000
for epoch in range(num_epochs):
    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Print progress
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the results
predicted = model(inputs).detach().numpy()
plt.plot(x, y, 'ro', label='Original data')
plt.plot(x, predicted, label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们首先生成了一些随机数据。然后,我们将数据转换为PyTorch张量,并定义了一个名为model的神经网络模型。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们绘制了原始数据和拟合线。

总结

在本文中,我们介绍了如何使用PyTorch来拟合函数,并提供了两个示例说明。这些技术对于在深度学习模型中使用回归非常有用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用Pytorch来拟合函数方式 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • pytorch1.0实现RNN-LSTM for Classification

    import torch from torch import nn import torchvision.datasets as dsets import torchvision.transforms as transforms import matplotlib.pyplot as plt # 超参数 # Hyper Parameters # 训练整批数据…

    PyTorch 2023年4月6日
    00
  • Windows安装Anaconda并且配置国内镜像的详细教程

    以下是Windows安装Anaconda并配置国内镜像的详细攻略: 步骤1:下载Anaconda 首先,您需要从Anaconda官网下载适用于Windows的Anaconda安装程序。您可以在以下网址下载:https://www.anaconda.com/products/distribution。 步骤2:安装Anaconda 下载完成后,双击安装程序并按…

    PyTorch 2023年5月15日
    00
  • pytorch实现kaggle猫狗识别

    参考:https://blog.csdn.net/weixin_37813036/article/details/90718310 kaggle是一个为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台,在这上面有非常多的好项目、好资源可供机器学习、深度学习爱好者学习之用。碰巧最近入门了一门非常的深度学习框架:pytorch(如果你对p…

    2023年4月8日
    00
  • 图文详解在Anaconda安装Pytorch的详细步骤

    以下是在Anaconda安装PyTorch的详细步骤: 打开Anaconda Navigator,点击Environments,然后点击Create创建一个新的环境。 在弹出的对话框中,输入环境名称,选择Python版本,然后点击Create创建环境。 在创建好的环境中,点击Open Terminal打开终端。 在终端中输入以下命令,安装PyTorch: b…

    PyTorch 2023年5月16日
    00
  • pytorch 查看cuda 版本方式

    在使用PyTorch进行深度学习开发时,需要查看CUDA版本来确定是否支持GPU加速。本文将介绍如何查看CUDA版本的方法,并演示如何在PyTorch中使用GPU加速。 查看CUDA版本的方法 方法一:使用命令行查看 可以使用以下命令在命令行中查看CUDA版本: nvcc –version 执行上述命令后,会输出CUDA版本信息,如下所示: nvcc: N…

    PyTorch 2023年5月15日
    00
  • Pytorch Distributed 初始化

    Pytorch Distributed 初始化方法 参考文献 https://pytorch.org/docs/master/distributed.html 代码https://github.com/overfitover/pytorch-distributed欢迎来star me. 初始化 torch.distributed.init_process_g…

    PyTorch 2023年4月6日
    00
  • pytorch函数之torch.normal()

    Returns a Tensor of random numbers drawn from separate normal distributions who’s mean and standard deviation are given. 这个是官网给出的解释,大意是返回一个张量,张量里面的随机数是从相互独立的正态分布中随机生成的。 根据官网中给出的实例进…

    PyTorch 2023年4月8日
    00
  • 神经网络学习–PyTorch学习06 迁移VGG16

        因为我们从头训练一个网络模型花费的时间太长,所以使用迁移学习,也就是将已经训练好的模型进行微调和二次训练,来更快的得到更好的结果。 import torch import torchvision from torchvision import datasets, models, transforms import os from torch.auto…

    PyTorch 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部