Java编写Mapreduce程序是一项重要的技能,能够帮助我们高效地处理大型数据集。以下是关于Java编写Mapreduce程序的完整攻略:
1. 准备开发环境
在Java编写Mapreduce程序之前,需要准备好以下开发环境:
- 开发工具:推荐使用IntelliJ IDEA或Eclipse等常见Java开发工具。
- Hadoop环境:需要安装Hadoop环境,以便在本地进行测试和调试。可以选择安装Hadoop的单机模式或分布式模式,具体根据不同需求来决定。
- Hadoop依赖:需要在开发环境中添加Hadoop依赖,以便编写和使用Mapreduce API。
在进行程序开发时,还可以借助一些常见的Mapreduce专用库,如Apache Avro、Apache Pig、Apache Hive等。
2. 编写Mapreduce程序
Mapreduce程序的核心是mapper和reducer,因此需要完成以下步骤:
2.1 实现Mapper
mapper是Mapreduce程序的第一步,负责将输入的数据解析为Key-Value键值对,以便下一步的reducer进行处理。以下是一个简单的Mapper示例:
public class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for (String word : words) {
context.write(new Text(word), new IntWritable(1));
}
}
}
上述示例中,mapper接受LongWritable类型的key,Text类型的value,输出Text类型的key和IntWritable类型的value。在实现map函数时,首先将输入的数据转化为String类型,并根据空格进行分割。之后,利用for循环遍历每个单词,并将每个单词输出为一个Key-Value键值对。其中,Text表示键值对的键,IntWritable表示键值对的值。
在实现mapper时,需要注意的是,map函数的参数和返回值必须满足Mapper接口的规范。
2.2 实现Reducer
reducer是Mapreduce程序的第二步,负责处理mapper输出的Key-Value键值对,并输出为新的Key-Value键值对。以下是一个简单的Reducer示例:
public class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable v : values) {
sum += v.get();
}
context.write(key, new IntWritable(sum));
}
}
上述示例中,reducer接受Text类型的key,IntWritable类型的value,输出Text类型的key和IntWritable类型的value。在实现reduce函数时,首先将每个相同Key的Value进行合并,并计算总和。之后,利用context对象输出结果。
在实现reducer时,需要注意的是,reduce函数的参数和返回值必须满足Reducer接口的规范。
2.3 运行Mapreduce程序
完成Mapper和Reducer的实现后,可以调用Hadoop提供的工具类运行Mapreduce程序。以下是一个简单的运行示例:
public class MyMapreduce {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "MyMapreduce");
job.setJarByClass(MyMapreduce.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
上述示例中,需要配置Mapreduce作业的文件输入路径和输出路径,以及Mapper和Reducer的类名。之后,调用job.waitForCompletion方法启动Mapreduce作业。
3. 示例
示例1:统计单词出现频率
以下是一个简单的统计单词出现频率的例子。
首先,编写Mapper实现:
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for (String word : words) {
context.write(new Text(word), new IntWritable(1));
}
}
}
其次,编写Reducer实现:
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
context.write(key, new IntWritable(sum));
}
}
最后,编写Mapreduce作业的调用代码:
public class WordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(WordCountReducer.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
示例2:计算平均数
以下是一个简单的计算平均数的例子。
首先,编写Mapper实现:
public class AvgMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] fields = line.split(",");
String name = fields[0];
double salary = Double.parseDouble(fields[1]);
context.write(new Text(name), new DoubleWritable(salary));
}
}
其次,编写Reducer实现:
public class AvgReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
@Override
public void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
double sum = 0;
int count = 0;
for (DoubleWritable value : values) {
sum += value.get();
count++;
}
double avg = sum / count;
context.write(key, new DoubleWritable(avg));
}
}
最后,编写Mapreduce作业的调用代码:
public class AvgSalary {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "avg salary");
job.setJarByClass(AvgSalary.class);
job.setMapperClass(AvgMapper.class);
job.setReducerClass(AvgReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
这样,我们就完成了一个计算平均数的Mapreduce程序。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Java编写Mapreduce程序过程浅析 - Python技术站