下面我将详细讲解“SpringBoot整合ShardingSphere的示例代码”的完整攻略,包含以下内容:
- 环境准备
- 引入依赖
- 配置数据库
- 配置ShardingSphere
- 编写示例代码
环境准备
在开始深入了解ShardingSphere之前,我们需要确保本地环境已经安装好了以下软件:
- JDK8+
- Maven
- MySQL 5.7+
引入依赖
在pom.xml文件中引入ShardingSphere和MySQL驱动的依赖,如下所示:
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>4.0.0-RC2</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.25</version>
</dependency>
配置数据库
在MySQL数据库中创建两张表user和order,分别用来保存用户和订单的数据。对于每一张表,我们至少需要为其准备一个物理数据节点。在本示例中,我们将每一个数据节点设置为一个MySQL数据库实例。
配置ShardingSphere
在SpringBoot的配置文件application.yml(或application.properties)中配置ShardingSphere。配置ShardingSphere主要包含以下两个步骤:
1.配置数据源
spring:
datasource:
# 主库
master:
jdbc-url: jdbc:mysql://localhost:3306/master?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password: root
driver-class-name: com.mysql.cj.jdbc.Driver
# 从库
slave0:
jdbc-url: jdbc:mysql://localhost:3307/slave0?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password: root
driver-class-name: com.mysql.cj.jdbc.Driver
# 数据源规则
sharding:
# 分库策略
default-data-source: master
data-sources:
master:
jdbc-url: jdbc:mysql://localhost:3306/master?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password: root
driver-class-name: com.mysql.cj.jdbc.Driver
slave0:
jdbc-url: jdbc:mysql://localhost:3307/slave0?serverTimezone=UTC&useSSL=false&useUnicode=true&characterEncoding=UTF-8
username: root
password: root
driver-class-name: com.mysql.cj.jdbc.Driver
# 分表策略
default-table-strategy:
standard:
sharding-column: id
precise-algorithm-class-name: io.shardingsphere.api.algorithm.sharding.standard.PreciseModuloShardingAlgorithm
range-algorithm-class-name: io.shardingsphere.api.algorithm.sharding.standard.RangeModuloShardingAlgorithm
tables:
user:
actual-data-nodes: master.user,slave0.user
key-generator:
column: id
type: SNOWFLAKE
order:
actual-data-nodes: master.order,slave0.order
key-generator:
column: id
type: SNOWFLAKE
在ShardingSphere的配置中,我们指定了两个数据源:master和slave0。其中,master数据源被指定为默认数据源,意味着当我们没有指定数据源时,ShardingSphere会自动将数据路由到master数据源上。
2.配置分片规则
在这个示例中,我们采用的是分库分表策略,具体策略如下:
- 数据库分库策略:根据user表中的id和order表中的id对2进行取模,结果为0的数据路由到master库,结果为1的数据路由到slave0库。
- 表分表策略:根据user表中的id和order表中的id对2进行取模,结果为0的数据路由到user_0和order_0表中,结果为1的数据路由到user_1和order_1表中。
我们可以在ShardingSphere的配置文件中指定分片策略,如下所示:
spring:
shardingsphere:
sharding:
# 分库策略
default-data-source: master
data-sources:
master:
# ...
slave0:
# ...
# 分表策略
default-table-strategy:
standard:
sharding-column: id
precise-algorithm-class-name: io.shardingsphere.api.algorithm.sharding.standard.PreciseModuloShardingAlgorithm
range-algorithm-class-name: io.shardingsphere.api.algorithm.sharding.standard.RangeModuloShardingAlgorithm
tables:
user:
actual-data-nodes: master.user,slave0.user
key-generator:
column: id
type: SNOWFLAKE
order:
actual-data-nodes: master.order,slave0.order
key-generator:
column: id
type: SNOWFLAKE
编写示例代码
最后,我们来编写一些示例代码来验证ShardingSphere的配置是否生效了。
@Service
public class UserService {
@Autowired
private JdbcTemplate jdbcTemplate;
public List<User> getAllUsers() {
return jdbcTemplate.query("SELECT * FROM user", (rs, rowNum) ->
new User(rs.getLong("id"), rs.getString("name"), rs.getInt("age")));
}
public Long addUser(User user) {
GeneratedKeyHolder keyHolder = new GeneratedKeyHolder();
jdbcTemplate.update(connection -> {
PreparedStatement ps = connection.prepareStatement("INSERT INTO user (name, age) VALUES (?, ?)",
Statement.RETURN_GENERATED_KEYS);
ps.setString(1, user.getName());
ps.setInt(2, user.getAge());
return ps;
}, keyHolder);
return keyHolder.getKey().longValue();
}
}
@Service
public class OrderService {
@Autowired
private JdbcTemplate jdbcTemplate;
public List<Order> getAllOrders() {
return jdbcTemplate.query("SELECT * FROM order", (rs, rowNum) ->
new Order(rs.getLong("id"), rs.getLong("userId"), rs.getInt("amount")));
}
public Long addOrder(Order order) {
GeneratedKeyHolder keyHolder = new GeneratedKeyHolder();
jdbcTemplate.update(connection -> {
PreparedStatement ps = connection.prepareStatement("INSERT INTO order (userId, amount) VALUES (?, ?)",
Statement.RETURN_GENERATED_KEYS);
ps.setLong(1, order.getUserId());
ps.setInt(2, order.getAmount());
return ps;
}, keyHolder);
return keyHolder.getKey().longValue();
}
}
上面是两个服务,一个用户服务UserService,一个订单服务OrderService,分别对应user表和order表的增删改查操作。
现在我们可以启动SpringBoot应用程序并使用Postman等工具测试ShardingSphere的配置了。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:SpringBoot整合ShardingSphere的示例代码 - Python技术站