1. 目标:开发轻量级爬虫(不包括需登陆的 和 Javascript异步加载的)

  不需要登陆的静态网页抓取

2. 内容:

  2.1 爬虫简介

  2.2 简单爬虫架构

  2.3 URL管理器

  2.4 网页下载器(urllib2)

  2.5 网页解析器(BeautifulSoup)

  2.6 完整实例:爬取百度百科Python词条相关的1000个页面数据

3. 爬虫简介:一段自动抓取互联网信息的程序

  Python 开发简单爬虫 - 基础框架

  爬虫价值:互联网数据,为我所用。

  Python 开发简单爬虫 - 基础框架

4. 简单爬虫架构:

  Python 开发简单爬虫 - 基础框架

  运行流程:   

  Python 开发简单爬虫 - 基础框架

5. URL管理器:管理待抓取URL集合 和 已抓取URL集合

  - 防止重复抓取、防止循环抓取

  Python 开发简单爬虫 - 基础框架

  - 实现方式:

  Python 开发简单爬虫 - 基础框架

6. 网页下载器:将互联网URL对应的网页下载到本地的工具

  Python 开发简单爬虫 - 基础框架

  - 分类:

  Python 开发简单爬虫 - 基础框架

  - urllib2 下载网页的方法:

    1. 最简洁方法: url ===> urllib2.urlopen(url)   

import urllib2

# 直接请求
response = urllib2.urlopen('http://www.baidu.com')

# 获取状态码,如果是200表示获取成功
print response.getcode()

# 读取内容
cont = response.read()

    2. 添加data、http header: (url,data,header) ===> urllib2.Request ===> urllib2.urlopen(request)

import urllib2

# 创建Request对象
request = urllib2.Request(url)

# 添加数据
request.add_data('a', '1')

# 添加http的header
request.add_header('User-Agent', 'Mozilla/5.0')

# 发送请求获取结果
response = urllib2.urlopen(request)

    3. 添加特殊情景的处理器:

       Python 开发简单爬虫 - 基础框架

import urllib2, cookielib

# 创建cookie容器
cj = cookielib.CookieJar()

# 创建1个opener
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

# 给urllib2安装opener
urllib2.install_opener(opener)

# 使用带有cookie的urllib2访问网页
response = urllib2.urlopen(“http://www.baidu.com/”)

7. urllib2 实例代码演示:

# -*- coding: utf-8 -*-
"""
Created on Tue Feb 14 10:31:06 2017

@author: Wayne
"""
import urllib2, cookielib

url = "http://www.baidu.com"

print "the 1st method"
response1 = urllib2.urlopen(url)
print response1.getcode()
print len(response1.read())

print "the 2nd method"
request = urllib2.Request(url)
request.add_header("user-agent", "Mozilla/5.0")
response2 = urllib2.urlopen(request)
print response2.getcode()
print len(response2.read())

print "the 3rd method"
cj = cookielib.CookieJar()
opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))
response3 = urllib2.urlopen(url)
print response3.getcode()
print cj
print response3.read()

8. 网页解析器:从网页中提取有价值数据的工具

  Python 开发简单爬虫 - 基础框架

  python 的网页解析器:

  Python 开发简单爬虫 - 基础框架

  结构化解析 - DOM ( Document Object Model) 树:

  Python 开发简单爬虫 - 基础框架

9. 网页解析器 - Beautiful Soup

  9.1 Beautiful Soup

    - Python 第三方库,用于从HTML或XML中提取数据

    - 官网:http://www.crummy.com/software/BeautifulSoup

  9.2 安装并测试 beautifulsoup4

    - 安装:pip install beautifulsoup4

    - 测试:import bs4

  9.3 Beautiful Soup语法

    Python 开发简单爬虫 - 基础框架

    Python 开发简单爬虫 - 基础框架

  9.4 创建 BeautifulSoup 对象

from bs4 import BeautifulSoup
# 根据 HTML 网页字符串创建 BeautifulSoup 对象
soup = BeautifulSoup(
                     html_doc,                     # HTML文档字符串
                     'html.parser'                  # HTML解析器
                     from_encoding='utf-8'     # HTML文档的编码
                     )

  9.5 搜索节点(find_all, find)

# 方法:find_all(name, attrs, string)
# 查找所有标签为 a 的节点
soup.find_all('a')

# 查找所有标签为 a,链接符合 /view/123.htm 形式的节点
soup.find_all('a', href='/view/123.htm')
soup.find_all('a', href=re.compiler(r'/view/\d+\.htm'))

# 查找所有标签为div, class为abc,文字为Python的节点
soup.find_all('div', class_='abc', string='Python')

  9.6 访问节点信息

# 得到节点: <a href='1.html'>Python</a>

# 获取查找到的节点的标签名称
node.name

# 获取查找到的a节点的href属性
node['href']

# 获取查找到的a节点的链接文字
node.get_text()

10. BeautifulSoup 实例测试

# -*- coding: utf-8 -*-
"""
Created on Tue Feb 14 11:00:42 2017

@author: Wayne
"""

from bs4 import BeautifulSoup
import re

html_doc = """
<html><head><title>The Dormouse's story</title></head>
<body>
<p class="title"><b>The Dormouse's story</b></p>

<p class="story">Once upon a time there were three little sisters; and their names were
<a href="http://example.com/elsie" class="sister" >Elsie</a>,
<a href="http://example.com/lacie" class="sister" >Lacie</a> and
<a href="http://example.com/tillie" class="sister" >Tillie</a>;
and they lived at the bottom of a well.</p>

<p class="story">...</p>
"""

soup = BeautifulSoup(html_doc, 'html.parser', from_encoding='urf-8')

print '\n## Get all the links'
links = soup.find_all('a')
for link in links:
    print link.name, link['href'], link.get_text()
    
    
print '\n## Get the links include "lacie"'
link_node = soup.find('a', href='http://example.com/lacie')
print link_node.name, link_node['href'], link_node.get_text()


print '\n## RE matching'
link_node = soup.find('a', href=re.compile(r"ill"))
print link_node.name, link_node['href'], link_node.get_text()


print '\n## Get "P" Paragraph Text'
p_node = soup.find('p', class_='title')
print p_node.name, p_node.get_text()