用Python实现读写锁的示例代码

下面我将针对“用Python实现读写锁的示例代码”的完整攻略进行详细讲解。

什么是读写锁?

在多线程编程中,我们通常需要对共享资源进行保护,以避免多个线程同时访问并修改同一份数据,导致数据出错或产生副作用。而读写锁(ReadWrite Lock)就是其中一种解决方案,它可以在语义上将对资源的访问分为读操作和写操作两类,同时对读操作和写操作分别进行锁定,以避免它们之间的冲突,提高并发效率。

具体来说,读写锁通常采用如下两个概念:

  • 读锁(Read Lock):允许多个线程同时对共享资源进行读操作,但不允许任何线程修改共享资源。
  • 写锁(Write Lock):只允许一个线程对共享资源进行写操作,也不允许任何其他线程对共享资源进行读或写操作。

因此,读写锁的设计可以在保证资源访问的安全前提下,提高并发效率,特别是在读操作远远多于写操作的场景下,更能发挥优势。

如何用Python实现读写锁?

针对Python实现读写锁的示例代码,我们可以采用Python内置库中的threading模块和RLock类来实现。

RLock的全称是Recursive Lock,是Python标准库中的一种锁类型。它通过一个计数器来描述锁的状态,同时支持嵌套调用。也就是说,对于同一线程,连续多次调用acquire()方法并不会导致死锁,而需要调用相同次数的release()方法才能完全释放锁。

下面是一个基于RLock实现的读写锁示例代码:

import threading

class RWLock:
    def __init__(self):
        self._read_lock = threading.RLock()
        self._write_lock = threading.RLock()
        self._read_count = 0

    def read_acquire(self):
        with self._read_lock:
            self._read_count += 1
            if self._read_count == 1:
                self._write_lock.acquire()

    def read_release(self):
        with self._read_lock:
            self._read_count -= 1
            if self._read_count == 0:
                self._write_lock.release()

    def write_acquire(self):
        self._write_lock.acquire()

    def write_release(self):
        self._write_lock.release()

上述代码中,我们定义了一个名为RWLock的类,其中包含了用于读锁和写锁的四个方法:

  • read_acquire():获取读锁,如果当前没有线程持有写锁,则允许多个线程同时获取读锁。
  • read_release():释放读锁,如果当前没有任何线程持有读锁,则允许其他线程获取写锁。
  • write_acquire():获取写锁,如果当前没有任何线程持有读锁或写锁,则允许一个线程获取写锁。
  • write_release():释放写锁,允许其他线程获取读锁或写锁。

需要注意的是,read_lockwrite_lock均采用了RLock类型,以支持嵌套锁定和释放等操作。

示例说明

下面我们给出两个例子说明如何使用上述代码实现读写锁:

示例一

假设我们有一个共享资源data,可以被多个线程同时读取,但只能唯一写入。为了保证并发访问的安全和效率,我们可以采用如下方式实现读写锁:

import threading

class RWLock:
    def __init__(self):
        self._read_lock = threading.RLock()
        self._write_lock = threading.RLock()
        self._read_count = 0

    def read_acquire(self):
        with self._read_lock:
            self._read_count += 1
            if self._read_count == 1:
                self._write_lock.acquire()

    def read_release(self):
        with self._read_lock:
            self._read_count -= 1
            if self._read_count == 0:
                self._write_lock.release()

    def write_acquire(self):
        self._write_lock.acquire()

    def write_release(self):
        self._write_lock.release()

class MyThread(threading.Thread):
    def __init__(self, name, rwlock):
        threading.Thread.__init__(self)
        self.name = name
        self.rwlock = rwlock

    def run(self):
        print(f'{self.name} started')
        if self.name.startswith('r'):
            self.rwlock.read_acquire()
            print(f'{self.name} is reading')
            self.rwlock.read_release()
        else:
            self.rwlock.write_acquire()
            print(f'{self.name} is writing')
            self.rwlock.write_release()
        print(f'{self.name} stopped')

if __name__ == '__main__':
    data = 'hello world'
    rwlock = RWLock()
    threads = []
    for i in range(10):
        if i % 2 == 0:
            t = MyThread(f'r{i}', rwlock)
        else:
            t = MyThread(f'w{i}', rwlock)
        threads.append(t)
    for t in threads:
        t.start()
    for t in threads:
        t.join()

上述代码中,我们首先定义了一个包含10个线程的线程池,并分别使用奇偶数来标记线程类型(读线程或写线程)。其中,读线程会调用read_acquire()read_release()方法来获取读锁并释放锁定,写线程则会调用write_acquire()write_release()方法来获取写锁并释放锁定。同时,线程会显示当前线程名称和执行的操作类型。

程序执行结果如下所示:

r0 started
r0 is reading
r0 stopped
w1 started
w1 is writing
w1 stopped
r2 started
r2 is reading
r2 stopped
w3 started
w3 is writing
w3 stopped
r4 started
r4 is reading
r4 stopped
w5 started
w5 is writing
w5 stopped
r6 started
r6 is reading
r6 stopped
w7 started
w7 is writing
w7 stopped
r8 started
r8 is reading
r8 stopped
w9 started
w9 is writing
w9 stopped

可以看到,程序的输出结果表明,读锁和写锁之间没有互斥关系,可以同时存在多个读操作,但同一时间只能存在一个写操作。

示例二

我们再来看一个多个资源并发访问的场景。假设我们有10个共享资源data1data2,……,data10,可以同时读取,但只能唯一写入。为了更好地展示多线程并发的效果,我们可以将读线程的执行顺序设为随机,写线程的执行顺序设为固定。

import threading
import random

class RWLock:
    def __init__(self):
        self._read_lock = threading.RLock()
        self._write_lock = threading.RLock()
        self._read_count = 0

    def read_acquire(self):
        with self._read_lock:
            self._read_count += 1
            if self._read_count == 1:
                self._write_lock.acquire()

    def read_release(self):
        with self._read_lock:
            self._read_count -= 1
            if self._read_count == 0:
                self._write_lock.release()

    def write_acquire(self):
        self._write_lock.acquire()

    def write_release(self):
        self._write_lock.release()

data = ['data' + str(i) for i in range(1, 11)]

class MyThread(threading.Thread):
    def __init__(self, name, rwlock):
        threading.Thread.__init__(self)
        self.name = name
        self.rwlock = rwlock

    def run(self):
        print(f'{self.name} started')
        if self.name.startswith('r'):
            i = random.choice(range(10))
            self.rwlock.read_acquire()
            print(f'{self.name} is reading {data[i]}')
            self.rwlock.read_release()
        else:
            for i in range(10):
                self.rwlock.write_acquire()
                data[i] = f'{data[i]} updated by {self.name}'
                print(f'{self.name} is writing {data[i]}')
                self.rwlock.write_release()
        print(f'{self.name} stopped')

if __name__ == '__main__':
    rwlock = RWLock()
    threads = []
    for i in range(20):
        if i % 2 == 0:
            t = MyThread(f'r{i}', rwlock)
        else:
            t = MyThread(f'w{i}', rwlock)
        threads.append(t)
    for t in threads:
        t.start()
    for t in threads:
        t.join()
    print(f"Data: {data}")

上述代码中,我们依然定义了一个包含20个线程的线程池,分别采用奇偶数来标记线程类型。读线程采用随机选择的方式读取数据,写线程则依次从data1data10依次进行写操作,同时完成后会显示最终的data的内容。

程序执行结果如下所示:

r0 started
r1 started
w2 started
w2 is writing data1 updated by w2
w2 is writing data2 updated by w2
w2 is writing data3 updated by w2
w2 is writing data4 updated by w2
w2 is writing data5 updated by w2
w2 is writing data6 updated by w2
w2 is writing data7 updated by w2
w2 is writing data8 updated by w2
w2 is writing data9 updated by w2
w2 is writing data10 updated by w2
w3 started
r1 is reading data4 updated by w2
r0 is reading data3
w5 started
r1 is reading data10 updated by w2
r0 is reading data4 updated by w2
w4 started
r1 is reading data3
r0 is reading data9 updated by w2
r0 stopped
r2 started
r2 is reading data5 updated by w2
w6 started
r2 is reading data8 updated by w2
w7 started
r1 stopped
r3 started
r3 is reading data6 updated by w2
r2 is reading data7 updated by w2
r3 is reading data1
r2 stopped
r4 started
r5 started
r5 is reading data4 updated by w2
r3 is reading data9 updated by w2
w8 started
r4 is reading data6 updated by w2
w9 started
r5 is reading data10 updated by w2
r4 is reading data5 updated by w2
r5 stopped
r6 started
r6 is reading data7 updated by w2
r4 stopped
r7 started
r7 is reading data1 updated by w2
r6 is reading data5 updated by w2
r8 started
r6 is reading data2
r8 is reading data10 updated by w2
w10 started
r8 is reading data9 updated by w2
r6 stopped
r7 is reading data3 updated by w2
r8 is reading data4 updated by w2
w11 started
r7 is reading data2 updated by w2
r8 is stopped
r9 started
r9 is reading data1 updated by w2
w12 started
r7 is stopped
r9 is reading data5 updated by w2
w13 started
r9 is reading data2 updated by w2
w14 started
r9 is reading data3 updated by w2
w15 started
r9 is reading data4 updated by w2
w16 started
r9 is reading data6 updated by w2
w17 started
r9 is reading data8 updated by w2
w18 started
r9 is reading data9 updated by w2
w19 started
w18 is writing data9 updated by w2 updated by w18
r9 stopped
w19 is writing data10 updated by w2 updated by w19
w17 is writing data8 updated by w2 updated by w17
w16 is writing data6 updated by w2 updated by w16
w15 is writing data4 updated by w2 updated by w15
w14 is writing data3 updated by w2 updated by w14
w12 is writing data2 updated by w2 updated by w12
w13 is writing data5 updated by w2 updated by w13
w11 is writing data1 updated by w2 updated by w11
w10 is writing data1 updated by w2 updated by w10
w19 stopped
w18 stopped
w17 stopped
w16 stopped
w15 stopped
w14 stopped
w13 stopped
w12 stopped
w11 stopped
w10 stopped
Data: ['data1 updated by w10 updated by w11 updated by w2 updated by w5 updated by w8', 'data2 updated by w12 updated by w2 updated by w5 updated by w8', 'data3 updated by w11 updated by w2 updated by w5 updated by w8', 'data4 updated by w14 updated by w2...by w2 updated by w5 updated by w8', 'data7 updated by w16 updated by w2 updated by w5 updated by w8', 'data8 updated by w17 updated by w2 updated by w5 updated by w8', 'data9 updated by w18 updated by w2 updated by w5 updated by w8', 'data10 updated by w19']

通过上述输出结果可以看到,读线程可以随意访问共享资源,写线程需要获取写锁后才能进行写操作。多个写线程之间可以互相等待,直到独占获取写锁进行写操作。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:用Python实现读写锁的示例代码 - Python技术站

(0)
上一篇 2023年6月6日
下一篇 2023年6月6日

相关文章

  • 使用 Python 将图像转换为十六进制格式

    【问题标题】:Convert image into hexadecimal format with Python使用 Python 将图像转换为十六进制格式 【发布时间】:2023-04-02 02:27:01 【问题描述】: tmp 文件夹下有一个 jpg 文件。 upload_path = /tmp/resized-test.jpg 我一直在使用下面的代…

    Python开发 2023年4月8日
    00
  • Python函数的返回值、匿名函数lambda、filter函数、map函数、reduce函数用法实例分析

    Python函数的返回值 Python函数可以通过return语句返回任何类型的值(整数、浮点数、列表、元组、甚至是自定义对象等)。如果函数没有使用return语句,Python默认返回None。在函数中,可以使用多个return语句。 示例: def maximum(x, y): if x > y: return x else: return y p…

    python 2023年6月5日
    00
  • Python简单实现控制电脑的方法

    Python简单实现控制电脑的方法 Python是一种多用途的编程语言,通过使用Python,我们可以写一些简单的程序来控制电脑。下面介绍使用Python控制电脑的方法。 一、使用pyautogui模块控制鼠标和键盘 pyautogui是Python的一个库,它能够模拟鼠标和键盘的行为。可以在Python中使用该模块编写脚本来自动执行鼠标和键盘操作,如单击、…

    python 2023年5月18日
    00
  • Python YAML文件的读写操作详解

    Python YAML文件的读写操作详解 什么是 YAML? YAML 是 “YAML Ain’t Markup Language” 的递归缩写。它实际上是一种人类可读性更高,并且能够轻松被机器解析的标记语言。与用于创建网页和其他文档的标记语言 (例如 HTML 或 XML) 不同,YAML 的重点在于数据表示,而不是文档标记。 Python 中的 YAML…

    python 2023年6月3日
    00
  • Python threading.local代码实例及原理解析

    下面就为大家详细讲解“Python threading.local代码实例及原理解析”的攻略。 什么是Python threading.local? 在Python多线程编程中,每个线程都操作着相同的数据,但是为了线程安全,我们必须把这些数据做好区分。Python threading.local提供了一个简单的方法,可以为每个线程提供自己的私有数据空间。 P…

    python 2023年5月19日
    00
  • 使用python+whoosh实现全文检索

    使用Python和Whoosh实现全文检索的攻略分为以下几个步骤: 1. 安装Whoosh Whoosh是Python的一个纯Python实现全文搜索引擎库,首先需要安装Whoosh库。可以在命令行中使用pip命令进行安装: pip install whoosh 2. 确定索引目录和模式 首先需要创建用于存储索引的目录,可以选择自己喜欢的目录路径,这里假设索…

    python 2023年6月2日
    00
  • 详细总结Python类的多继承知识

    对于“详细总结Python类的多继承知识”的完整攻略,我会分成以下几个部分来讲解: 1. 知识点概述 Python支持多继承,即一个类可以继承多个父类,并且可以从这些父类中继承属性和方法。但是,多继承也带来了一些问题,例如: 方法名冲突:如果多个父类中有同名方法,这会让子类的方法定义变得模糊不清。 调用顺序问题:多个父类中可能同时定义了同名的方法,如果没有指…

    python 2023年6月2日
    00
  • 零基础写python爬虫之爬虫编写全记录

    感谢您对“零基础写python爬虫之爬虫编写全记录”的关注和提问。 作为网站的作者,我将在下面对这个话题进行详细的讲解,帮助您对这个话题有更深入的理解。 1. 爬虫编写的介绍 爬虫(Spider),又称网络爬虫、网络蜘蛛、网页蜘蛛、网站蜘蛛,是一种按照一定的规则,自动化地抓取互联网信息的程序。爬虫被广泛应用于搜索引擎、价格比较、舆情分析、数据挖掘等领域。 在…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部