1、caffemodel文件
文件名称为:bvlc_reference_caffenet.caffemodel,文件大小为230M左右,为了代码的统一,将这个caffemodel文件下载到caffe根目录下的 models/bvlc_reference_caffenet/ 文件夹下面。可以运行脚本文件进行下载:
./scripts/download_model_binary.py models/bvlc_reference_caffenet
2、均值文件。
有了caffemodel文件,就需要对应的均值文件,在测试阶段,需要把测试数据减去均值。这个文件我们用脚本来下载,在caffe根目录下执行:
sh ./data/ilsvrc12/get_ilsvrc_aux.sh
执行并下载后,均值文件放在 data/ilsvrc12/ 文件夹里。
3、synset_words.txt文件
在调用脚本文件下载均值的时候,这个文件也一并下载好了。里面放的是1000个类的名称。
python方法
caffe开发团队实际上也编写了一个python版本的分类文件,路径为 python/classify.py
运行这个文件必需两个参数,一个输入图片文件,一个输出结果文件。而且运行必须在python目录下。假设当前目录是caffe根目录,则运行:
cd python python classify.py ../examples/images/cat.jpg result.npy
分类的结果保存为当前目录下的result.npy文件里面,是看不见的。而且这个文件有错误,运行的时候,会提示
Mean shape incompatible with input shape
的错误。因此,要使用这个文件,我们还得进行修改:
1、修改均值计算:
定位到
mean = np.load(args.mean_file)
这一行,在下面加上一行:
mean=mean.mean(1).mean(1)
则可以解决报错的问题。
2、修改文件,使得结果显示在命令行下:
定位到
# Classify. start = time.time() predictions = classifier.predict(inputs, not args.center_only) print("Done in %.2f s." % (time.time() - start))
这个地方,在后面加上几行,如下所示:
# Classify. start = time.time() predictions = classifier.predict(inputs, not args.center_only) print("Done in %.2f s." % (time.time() - start)) imagenet_labels_filename = '../data/ilsvrc12/synset_words.txt' labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t') top_k = predictions.flatten().argsort()[-1:-6:-1] for i in np.arange(top_k.size): print top_k[i], labels[top_k[i]]
就样就可以了。运行不会报错,而且结果会显示在命令行下面。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:caffe学习笔记(十二)用训练好的模型进行分类 - Python技术站