pandas表连接 索引上的合并方法

pandas表连接 索引上的合并方法

在进行数据处理和分析时,经常需要将多个表格进行合并。Pandas提供了多种方法来实现表格合并,本篇攻略将重点介绍如何使用索引上的合并方法。

在进行Pandas表格合并时,索引的作用非常重要。Pandas提供了四种主要的索引上的表格合并方法,分别是concat、merge、join和append。下面将依次介绍这四种方法。

concat方法

在Pandas中,使用concat方法可以将多个表格沿着某个轴方向进行合并,轴方向可以是列方向(axis=1)或行方向(axis=0)。

示例1:将两个行数相同的表格按行方向合并

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                   'B': ['B4', 'B5', 'B6', 'B7'],
                   'C': ['C4', 'C5', 'C6', 'C7'],
                   'D': ['D4', 'D5', 'D6', 'D7']})
result = pd.concat([df1,df2])
print(result)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
0  A4  B4  C4  D4
1  A5  B5  C5  D5
2  A6  B6  C6  D6
3  A7  B7  C7  D7

示例2:将两个列数相同的表格按列方向合并

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'E': ['E0', 'E1', 'E2', 'E3'],
                   'F': ['F0', 'F1', 'F2', 'F3'],
                   'G': ['G0', 'G1', 'G2', 'G3'],
                   'H': ['H0', 'H1', 'H2', 'H3']})
result = pd.concat([df1,df2],axis=1)
print(result)

输出结果为:

   A  B  C  D   E   F   G   H
0  A0  B0  C0  D0  E0  F0  G0  H0
1  A1  B1  C1  D1  E1  F1  G1  H1
2  A2  B2  C2  D2  E2  F2  G2  H2
3  A3  B3  C3  D3  E3  F3  G3  H3

merge方法

merge方法是将两个表格按照某个共同列进行合并。在进行merge操作时,需要指定合并的方式(inner、outer、left、right)和合并的列名。如果两个表格中对应列的元素不同,则根据合并方式选择保留哪些记录。

示例3:根据共同列A合并两个表格

import pandas as pd

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                       'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on='key')
print(result)

输出结果为:

  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

join方法

join方法是将两个表格按照索引进行合并,不需要指定列名。join方法的默认合并方式为左连接,即以左边的表格为主进行合并。

示例4:按索引将两个表格合并,不保留不匹配的行

import pandas as pd

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']},
                      index=['K0', 'K1', 'K2', 'K3'])

right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']},
                       index=['K0', 'K1', 'K4', 'K5'])

result = left.join(right, how='inner')
print(result)

输出结果为:

     A   B   C   D
K0  A0  B0  C0  D0
K1  A1  B1  C1  D1

append方法

append方法可以将一个表格添加到另一个表格的末尾,相当于在第一个表格的末尾添加了第二个表格的所有行。与concat方法不同,append方法只支持按行方向合并。

示例5:将一个表格添加到另一个表格的末尾

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                   'B': ['B4', 'B5', 'B6', 'B7'],
                   'C': ['C4', 'C5', 'C6', 'C7'],
                   'D': ['D4', 'D5', 'D6', 'D7']})
result = df1.append(df2)
print(result)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
0  A4  B4  C4  D4
1  A5  B5  C5  D5
2  A6  B6  C6  D6
3  A7  B7  C7  D7

以上就是使用Pandas索引上的表格合并方法的详细介绍。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas表连接 索引上的合并方法 - Python技术站

(0)
上一篇 2023年6月13日
下一篇 2023年6月13日

相关文章

  • pyspark对Mysql数据库进行读写的实现

    下面是“pyspark对Mysql数据库进行读写的实现”的完整攻略。 1. 安装必要的库 在使用pyspark进行读写mysql数据之前,需要先安装必要的库pyspark和mysql-connector-python,具体安装过程如下: pip install pyspark pip install mysql-connector-python 2. 配置M…

    python 2023年5月14日
    00
  • 在Pandas中查找数据框架的列和行的最大值和位置

    在Pandas中查找数据框架的列和行的最大值和位置,可以使用max()和idxmax()函数。其中,max()函数可以返回列或行中的最大值,idxmax()函数可以返回最大值对应的索引位置。 以下是具体的实例说明: 查找数据框架(df)中某一列的最大值及其位置 import pandas as pd # 生成测试数据 data = {‘name’: [‘To…

    python-answer 2023年3月27日
    00
  • 在Pandas中把列表式的列元素转换成独立的行

    在Pandas中,我们可以使用melt()函数来将列表式的列元素转换成独立的行。下面是具体的步骤和代码示例: 读取数据 首先,我们需要读取一个包含列表式的数据。例如,下面的示例数据中,列“Languages”包含了列表元素。 import pandas as pd df = pd.DataFrame({ ‘Name’: [‘Alice’, ‘Bob’, ‘C…

    python-answer 2023年3月27日
    00
  • Python 从 narray/lists 的 dict 创建 DataFrame

    Python中的pandas库提供了DataFrame数据结构,可以用于数据分析和数据操作。DataFrame可以通过多种方式创建,其中之一是通过字典(dict)转换得到。本篇文章将详细讲解如何使用Python从narray/lists的dict创建DataFrame,包括如何设置列名、索引、数据类型等。 1. 实例说明 在开始讲解之前,先给出一个示例数据,…

    python-answer 2023年3月27日
    00
  • Pandas GroupBy一列并获取平均值、最小值和最大值

    当我们使用Pandas进行数据分析时,经常需要对数据进行分组操作并计算统计量。GroupBy是一种十分强大的Pandas工具,可以帮助我们轻松地实现按照某列(列名)分组,然后对分组内的数据进行计算统计量,如求平均值(mean)、最小值(min)、最大值(max)等。 下面,我们通过一些实例来演示Pandas GroupBy的用法,具体步骤如下: 安装 Pan…

    python-answer 2023年3月27日
    00
  • pandas string转dataframe的方法

    下面我将详细讲解pandas中string转dataframe的方法。 首先需要了解的是pandas中的read_csv函数。该函数可以读取csv文件并将其转换为dataframe格式。在转换的过程中,可以通过指定参数来设置列名、索引等信息。而我们要将string转换为dataframe,则可以利用read_csv函数的一个特殊参数——io。当这个参数被传入…

    python 2023年5月14日
    00
  • pandas apply 函数 实现多进程的示例讲解

    什么是pandas apply函数? Pandas库是Python中最强大的数据处理库之一,具有非常多的数据处理功能,其中DataFrame是其中最常用的数据结构。apply()函数是pandas DataFrame中非常重要的一个函数,它可以将函数应用到整个DataFrame、Series或者一部分数据集中,并且能够返回处理结果,这些结果可以是标量、列表、…

    python 2023年5月14日
    00
  • 详解PANDAS 数据合并与重塑(join/merge篇)

    详解PANDAS数据合并与重塑(join/merge篇) 在PANDAS中,数据合并和重塑是十分重要的基础操作。本文将详细讲解PANDAS中的数据合并和重塑。 合并数据 横向合并 横向合并意味着将两个数据集按照行合并,即增加新的列。 可以使用pandas中的merge()函数实现。例如: import pandas as pd df1 = pd.DataFr…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部