pandas表连接 索引上的合并方法

pandas表连接 索引上的合并方法

在进行数据处理和分析时,经常需要将多个表格进行合并。Pandas提供了多种方法来实现表格合并,本篇攻略将重点介绍如何使用索引上的合并方法。

在进行Pandas表格合并时,索引的作用非常重要。Pandas提供了四种主要的索引上的表格合并方法,分别是concat、merge、join和append。下面将依次介绍这四种方法。

concat方法

在Pandas中,使用concat方法可以将多个表格沿着某个轴方向进行合并,轴方向可以是列方向(axis=1)或行方向(axis=0)。

示例1:将两个行数相同的表格按行方向合并

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                   'B': ['B4', 'B5', 'B6', 'B7'],
                   'C': ['C4', 'C5', 'C6', 'C7'],
                   'D': ['D4', 'D5', 'D6', 'D7']})
result = pd.concat([df1,df2])
print(result)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
0  A4  B4  C4  D4
1  A5  B5  C5  D5
2  A6  B6  C6  D6
3  A7  B7  C7  D7

示例2:将两个列数相同的表格按列方向合并

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'E': ['E0', 'E1', 'E2', 'E3'],
                   'F': ['F0', 'F1', 'F2', 'F3'],
                   'G': ['G0', 'G1', 'G2', 'G3'],
                   'H': ['H0', 'H1', 'H2', 'H3']})
result = pd.concat([df1,df2],axis=1)
print(result)

输出结果为:

   A  B  C  D   E   F   G   H
0  A0  B0  C0  D0  E0  F0  G0  H0
1  A1  B1  C1  D1  E1  F1  G1  H1
2  A2  B2  C2  D2  E2  F2  G2  H2
3  A3  B3  C3  D3  E3  F3  G3  H3

merge方法

merge方法是将两个表格按照某个共同列进行合并。在进行merge操作时,需要指定合并的方式(inner、outer、left、right)和合并的列名。如果两个表格中对应列的元素不同,则根据合并方式选择保留哪些记录。

示例3:根据共同列A合并两个表格

import pandas as pd

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                       'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on='key')
print(result)

输出结果为:

  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

join方法

join方法是将两个表格按照索引进行合并,不需要指定列名。join方法的默认合并方式为左连接,即以左边的表格为主进行合并。

示例4:按索引将两个表格合并,不保留不匹配的行

import pandas as pd

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']},
                      index=['K0', 'K1', 'K2', 'K3'])

right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']},
                       index=['K0', 'K1', 'K4', 'K5'])

result = left.join(right, how='inner')
print(result)

输出结果为:

     A   B   C   D
K0  A0  B0  C0  D0
K1  A1  B1  C1  D1

append方法

append方法可以将一个表格添加到另一个表格的末尾,相当于在第一个表格的末尾添加了第二个表格的所有行。与concat方法不同,append方法只支持按行方向合并。

示例5:将一个表格添加到另一个表格的末尾

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                   'B': ['B4', 'B5', 'B6', 'B7'],
                   'C': ['C4', 'C5', 'C6', 'C7'],
                   'D': ['D4', 'D5', 'D6', 'D7']})
result = df1.append(df2)
print(result)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
0  A4  B4  C4  D4
1  A5  B5  C5  D5
2  A6  B6  C6  D6
3  A7  B7  C7  D7

以上就是使用Pandas索引上的表格合并方法的详细介绍。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas表连接 索引上的合并方法 - Python技术站

(0)
上一篇 2023年6月13日
下一篇 2023年6月13日

相关文章

  • 如何在Pandas DataFrame中把字符串转换成浮点数

    将字符串转换为浮点数在 Pandas DataFrame 中是一个常见的操作,可以使用 astype() 方法来完成。具体攻略如下: 读取数据:首先读取 Pandas DataFrame 中的数据,可以使用 pd.read_csv() 方法从 CSV 文件中读取,也可以使用 pd.DataFrame() 方法从列表或字典中创建。 确认列名:确认要转换为浮点数…

    python-answer 2023年3月27日
    00
  • Python中的pandas.lreshape()函数

    概述 Pandas是一个Python数据分析库,其中的lreshape()函数用于将宽格式(wide format)数据转换为长格式(long format)数据,可以实现字段的合并和重塑任务,适用于已有数据没有符合分析要求格式的场景。本文将详细介绍pandas.lreshape()的用法和示例。 语法 函数的语法如下所示: pandas.lreshape(…

    python-answer 2023年3月27日
    00
  • python pandas 时间日期的处理实现

    以下是“Python Pandas时间日期的处理实现”的完整攻略。 1. 引言 Pandas是Python中重要的数据处理库之一,在数据处理过程中,时间日期的处理非常常见。本攻略将介绍如何使用Pandas处理时间日期数据,包括日期的创建、转换、筛选和分组等。 2. Pandas中的时间日期类型 Pandas中提供了两种时间日期类型:Timestamp和Dat…

    python 2023年5月14日
    00
  • 用于数据分析的小提琴图

    小提琴图是一种基于箱线图和核密度估计可视化方法的图表类型,用于展示数据的分布情况。 下面是使用matplotlib库绘制小提琴图的示例代码: import matplotlib.pyplot as plt import numpy as np # 生成随机数据 data = [np.random.normal(0, std, 100) for std in …

    python-answer 2023年3月27日
    00
  • 在Pandas DataFrame的每组中获取最上面的N条记录

    要在Pandas DataFrame的每组中获取最上面的N条记录,我们可以使用groupby和head方法的组合。使用groupby方法将数据按照某一列或多列进行分组,然后再使用head方法获取每组的前N条记录。 下面是具体步骤: 使用pandas库读取数据。例如,我们可以使用以下代码读取名为“data.csv”的CSV文件,并将其保存为名为“df”的Dat…

    python-answer 2023年3月27日
    00
  • Pandas的时间序列操作基础

    下面是关于Pandas时间序列操作基础的完整攻略: 介绍Pandas的时间序列 Pandas是一个用于数据分析的Python库,主要用于数据整理、清理和处理,也支持灵活的数据可视化处理。Pandas支持时间序列数据的处理,这些时间序列数据是按时间顺序采样的数据点,并且通常每个数据点都与一个时间标签相关联。 创建时间序列 Pandas支持从多种格式中创建时间序…

    python-answer 2023年3月27日
    00
  • Pandas 格式化日期时间

    当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,就需要对日期时间做统一的格式化处理。 比如“Wednesday, June 6, 2023”可以写成“6/6/23”,或“06-06-2023”。 在 Pandas 中,我们可以使用 pd.to_datetime() 函数将日期字符串或时间戳转换为 Pandas 的日期时间类型。…

    Pandas 2023年3月6日
    00
  • Pandas:DataFrame对象的基础操作方法

    Pandas是Python中最受欢迎的数据分析工具之一,提供了各种各样处理结构化数据的功能。其中,DataFrame是最为常见的数据结构之一,类似于Excel中的表格,常用于处理二维数组,但是也可以用于处理多维数组。 以下是Pandas中DataFrame对象的基础操作方法的完整攻略: 创建DataFrame对象 要使用DataFrame最基本的操作是创建它…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部