pandas表连接 索引上的合并方法

pandas表连接 索引上的合并方法

在进行数据处理和分析时,经常需要将多个表格进行合并。Pandas提供了多种方法来实现表格合并,本篇攻略将重点介绍如何使用索引上的合并方法。

在进行Pandas表格合并时,索引的作用非常重要。Pandas提供了四种主要的索引上的表格合并方法,分别是concat、merge、join和append。下面将依次介绍这四种方法。

concat方法

在Pandas中,使用concat方法可以将多个表格沿着某个轴方向进行合并,轴方向可以是列方向(axis=1)或行方向(axis=0)。

示例1:将两个行数相同的表格按行方向合并

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                   'B': ['B4', 'B5', 'B6', 'B7'],
                   'C': ['C4', 'C5', 'C6', 'C7'],
                   'D': ['D4', 'D5', 'D6', 'D7']})
result = pd.concat([df1,df2])
print(result)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
0  A4  B4  C4  D4
1  A5  B5  C5  D5
2  A6  B6  C6  D6
3  A7  B7  C7  D7

示例2:将两个列数相同的表格按列方向合并

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'E': ['E0', 'E1', 'E2', 'E3'],
                   'F': ['F0', 'F1', 'F2', 'F3'],
                   'G': ['G0', 'G1', 'G2', 'G3'],
                   'H': ['H0', 'H1', 'H2', 'H3']})
result = pd.concat([df1,df2],axis=1)
print(result)

输出结果为:

   A  B  C  D   E   F   G   H
0  A0  B0  C0  D0  E0  F0  G0  H0
1  A1  B1  C1  D1  E1  F1  G1  H1
2  A2  B2  C2  D2  E2  F2  G2  H2
3  A3  B3  C3  D3  E3  F3  G3  H3

merge方法

merge方法是将两个表格按照某个共同列进行合并。在进行merge操作时,需要指定合并的方式(inner、outer、left、right)和合并的列名。如果两个表格中对应列的元素不同,则根据合并方式选择保留哪些记录。

示例3:根据共同列A合并两个表格

import pandas as pd

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                      'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                       'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on='key')
print(result)

输出结果为:

  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

join方法

join方法是将两个表格按照索引进行合并,不需要指定列名。join方法的默认合并方式为左连接,即以左边的表格为主进行合并。

示例4:按索引将两个表格合并,不保留不匹配的行

import pandas as pd

left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                      'B': ['B0', 'B1', 'B2', 'B3']},
                      index=['K0', 'K1', 'K2', 'K3'])

right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                       'D': ['D0', 'D1', 'D2', 'D3']},
                       index=['K0', 'K1', 'K4', 'K5'])

result = left.join(right, how='inner')
print(result)

输出结果为:

     A   B   C   D
K0  A0  B0  C0  D0
K1  A1  B1  C1  D1

append方法

append方法可以将一个表格添加到另一个表格的末尾,相当于在第一个表格的末尾添加了第二个表格的所有行。与concat方法不同,append方法只支持按行方向合并。

示例5:将一个表格添加到另一个表格的末尾

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                   'B': ['B0', 'B1', 'B2', 'B3'],
                   'C': ['C0', 'C1', 'C2', 'C3'],
                   'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                   'B': ['B4', 'B5', 'B6', 'B7'],
                   'C': ['C4', 'C5', 'C6', 'C7'],
                   'D': ['D4', 'D5', 'D6', 'D7']})
result = df1.append(df2)
print(result)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
0  A4  B4  C4  D4
1  A5  B5  C5  D5
2  A6  B6  C6  D6
3  A7  B7  C7  D7

以上就是使用Pandas索引上的表格合并方法的详细介绍。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas表连接 索引上的合并方法 - Python技术站

(0)
上一篇 2023年6月13日
下一篇 2023年6月13日

相关文章

  • 获取DataFrame列中最大值的索引

    获取DataFrame列中最大值的索引可以通过以下方法实现: 1.先使用pandas库读取数据文件创建一个DataFrame对象。 import pandas as pd data = pd.read_csv(‘sample.csv’) df = pd.DataFrame(data) 2.使用max()函数获取Series列的最大值,再通过idxmax()函…

    python-answer 2023年3月27日
    00
  • pandas pd.cut()与pd.qcut()的具体实现

    当我们需要将连续性数据进行离散化时,pandas中提供了两个方法pd.cut()和pd.qcut()。pd.cut()是基于指定的区间对数据进行划分,而pd.qcut()则是面向数据分布的方式进行划分。下面将具体介绍这两个方法的使用。 pd.cut() 基本结构 pandas.cut(x, bins, right=True, labels=None, ret…

    python 2023年5月14日
    00
  • Python Pandas – 检查两个共享封闭端点的Interval对象是否重叠

    Python Pandas是一个强大的数据分析库,它提供了丰富的数据处理和分析工具,其中包括对interval对象的支持。在Pandas中,可以使用interval_range()函数来创建interval对象,可以使用overlaps()方法来检查interval对象是否重叠。 要检查两个共享封闭端点的interval对象是否重叠,可以使用overlaps…

    python-answer 2023年3月27日
    00
  • Python中用append()连接后多出一列Unnamed的解决

    当使用Python的pandas库将多个DataFrame对象合并为一个时,经常会遇到出现“Unnamed”列的问题。这个问题通常是由于DataFrame对象在合并过程中没有正确处理索引或列名造成的。解决这个问题的方法是使用合适的列名和索引,同时避免使用多个DataFrame对象拼接时出现重复的列名和索引。 以下是解决这个问题的攻略: 方案一:明确设置列名和…

    python 2023年5月14日
    00
  • Python数据分析模块pandas用法详解

    Python数据分析模块pandas用法详解 1. pandas概述 pandas是一个Python的第三方库,主要用于数据分析和数据处理。它提供了高效的数据结构与数据分析工具,被广泛应用于数据挖掘、数据分析、数据预处理等各个领域。pandas的核心数据结构是DataFrame和Series,DataFrame是二维的表格结构,而Series是一维的数组结构…

    python 2023年5月14日
    00
  • 在Pandas中用另一个DataFrame的值替换一个DataFrame的值

    首先,我们需要明确的是,Pandas中用另一个DataFrame的值替换一个DataFrame的值有两种情况: 用另一个DataFrame替换当前DataFrame中所有匹配的值。 用另一个DataFrame替换当前DataFrame中指定列(列名相同)的所有匹配的值。 下面,我们将对这两种情况进行详细的讲解。 用另一个DataFrame替换当前DataFr…

    python-answer 2023年3月27日
    00
  • Python+Empyrical实现计算风险指标

    下面我将详细讲解如何使用Python和Empyrical实现计算风险指标,包括以下几个步骤: 安装必要的Python库 数据准备 计算风险指标 1. 安装必要的Python库 在Python中,我们可以通过pip安装需要的库。Empyrical是一个用于金融统计的Python库,可以帮助我们计算各种风险指标。安装Empyrical可以使用以下命令: pip …

    python 2023年6月13日
    00
  • 为Pandas数据框架添加零列

    为Pandas数据框架添加零列,需要遵循以下步骤: 导入Pandas模块: import pandas as pd 创建一个数据框架: df = pd.DataFrame({‘A’: [1, 2, 3], ‘B’: [4, 5, 6]}) 使用pd.concat()函数将一个空的数据框架和原始数据框架连接起来。在pd.concat()函数的参数中,设置axi…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部