numpy之多维数组的创建全过程

Numpy是Python中一个非常强大的数学库,它提供了许多高效的数学函数和工具,特别是对于数组和矩阵的处理。本攻略详细讲解Numpy中多维数组的创建过程,包括多维数组的创建、索引和切片、数组运算等。

多维数组的创建

使用Numpy,我们可以创建各种类型多数组。下面是一些示例:

import numpy as np

# 创建一个包含3个列表的二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 创建一个包含2个二维数组的三维数组
arr2 = np.array([[[, 2], [3, 4]], [[5, 6], [7, 8]]])

# 创建一个包含3个三维数组的四维数组arr3 = np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]], [[[9, 10], [11, 12]], [[13, 14], [15 16]]], [[[17, 18], [19, 20]], [[21, 22], [23, 24]]]])

在上面的示例,我们使用np.array()函数创建了不同维度的数组,包括二维数组、三维数组和四维数组。

多维数组的索引和切片

使用Numpy,我们可以像Python列表一样对多维数组进行索引和切片。下面是一些示例:

import numpy as np

# 创建一个包含3个列表的二维数组
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 获取数组中的第二行第列元素
print(arr[1, 2])

# 获取数组的第一列元素
print(arr[:, 0])

# 获取数组中的前两行元素
print(arr[:2, :])

在上面的示例中,我们使用索引和切片操作获取了数组中的特定元素。

多维数组的运算

使用Numpy,我们对多维数组进行各种运算。下面是一些示例:

import numpy as np

# 创建两个包含3个列表的二数组
arr1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
arr2 = np.array([[9, 8, 7], [, 5, 4], [3, 2, 1]])

# 对两个数组进行加法运算
print(arr1 + arr2)

# 对两个数组进行乘法运算
(arr1 * arr2)

# 对数组中的元素进行平方运算
print(np.square(arr1))

在上面的示例中,我们对数组进行了加法、乘法和平方运算。

示例一:使用Numpy创建一个三维数组

下面使用Numpy创建一个三维数组的示例:

import numpy as np

# 创建一个包含2个二维数组的三维数组
arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

# 打印数组
print(arr)

在上面的示例中,我们使用np.array()函数创建了一个包含2个二维的三维数组。然后我们打印了这个数组。

示例二:使用Numpy对多维数组进行运算

下面是使用Numpy对多维数组进行运算的示例:

import numpy as np

# 创建两个含3个列表的二维数组
arr1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
arr2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])

# 对两个数组进行加法运算
result1 = arr1 + arr2

# 对两个数组进行乘运算
result2 = arr1 * arr2

# 打印结果
print(result1)
print(result2)

在上面的示例中,我们首先创建了两个包含3个列表的二维数组。然后我们对这两个数组进行了加法和乘法运算。最后,我们打印出了结果。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:numpy之多维数组的创建全过程 - Python技术站

(0)
上一篇 2023年5月13日
下一篇 2023年5月13日

相关文章

  • numpy下的flatten()函数用法详解

    以下是关于“numpy下的flatten()函数用法详解”的完整攻略。 背景 在NumPy中,可以使用flatten()函数将多维数组转换为一维数组。本攻略将介绍如何使用flatten()函数,并提供两个示例来演示它的用法。 flatten()函数 flatten()用于将多维数组转换为一维数组。可以使用以下语法: import numpy as np # …

    python 2023年5月14日
    00
  • tensorflow1.x和tensorflow2.x中的tensor转换为字符串的实现

    以下是TensorFlow 1.x和TensorFlow 2.x中将Tensor转换为字符串的实现的详细攻略,包括两个示例。 TensorFlow 1.x中将Tensor转换为字符串实现 在TensorFlow 1.x中,使用tf.Print函数将Tensor转换为字符串并打印出来。以下是示例代码: import tensorflow as tf # 创建一…

    python 2023年5月14日
    00
  • python常用库之NumPy和sklearn入门

    以下是关于“python常用库之NumPy和sklearn入门”的完整攻略。 背景 NumPy和sklearn是Python中常用的科学计算库,可以用于处理大量数值数据。NumPy供了高效的数组操作和数学函数,而sklearn则提供了各种机器学习算法和工具。本攻略将介绍Py和sklearn的基本概念和用法,并提供两个示例来演示如使用这些库。 NumPy入门 …

    python 2023年5月14日
    00
  • pytorch 加载(.pth)格式的模型实例

    PyTorch是一个非常流行的深度学习框架,可以用于训练和部署神经网络模型。在训练好一个模型后,我们需要将其保存下来以便后续使用。PyTorch提供了.pth格式来保存模型的参数,本文将详细讲解如何加载.pth格式的模型实例。 加载.pth格式的模型实例 在PyTorch中,可以使用torch.load函数来加载.pth格式的模型实例。以下是加载.pth格式…

    python 2023年5月14日
    00
  • Python快速转换numpy数组中Nan和Inf的方法实例说明

    在Python中,当我们使用Numpy进行科学计算时,经常需要对数组中的NaN和Inf进行处理。下面是两种常见的处理方法: 方法一:使用numpy.nan_to_num函数 numpy.nan_to_num()函数将NaN和Inf替换为0和有限的数字。下面是一个示例: import numpy as np arr = np.array([1, 2, np.n…

    python 2023年5月13日
    00
  • python科学计算之narray对象用法

    以下是关于“Python科学计算之narray对象用法”的完整攻略。 背景 在Python科学计算中,narray对象是非常重要的数据结构之一。本攻略将详细介绍narray用法。 narray对象的创建 在Python中,可以使用numpy库中的array函数创建narray对象。以下是创建narray对象示例: import numpy as np # 创…

    python 2023年5月14日
    00
  • python3库numpy数组属性的查看方法

    以下是关于“Python3库NumPy数组属性的查看方法”的完整攻略。 背景 在NumPy中,有时需要查看数组的属性,例如形状、大小、数据等。本攻略介绍Python3库NumPy数组属性的查看方法,并提供两个示例来演示如何使用这些方法。 方法1:ndarray.shape ndarray.shape用于查看数组的形状。可以使用以下语法: import num…

    python 2023年5月14日
    00
  • python读取txt数据的操作步骤

    下面是Python读取txt数据的操作步骤的完整攻略: 步骤一:打开txt文件 使用Python内置的open()函数来打开txt文件,语法如下: f = open(‘文件路径/文件名.txt’) 其中,要读取的txt文件名和路径要写在引号中。如果txt文件在当前工作目录下,则只需要写文件名。 步骤二:读取txt文件内容 1. 一次性读取 使用read()函…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部