解读pandas.DataFrame.corrwith

以下是关于解读pandas.DataFrame.corrwith的完整攻略,包含两个示例。

pandas.DataFrame.corrwith

pandas.DataFrame.corrwith是pandas库中的一个函数,用于计算DataFrame中每一列与定Series或DataFrame的相关系数。该函数返回一个Series,其中包含每一列与指定Series或DataFrame的相关系数。

以下是pandas.DataFrame.corrwith的语法:

DataFrame.corrwith(other, axis=0, drop=False, method='pearson')

参数说明:

  • other:指定的Series或DataFrame。
  • axis:计算相关系数的轴。默认为0,表示计算每一列与指定Series或DataFrame的相关系数。
  • drop:是否删除缺失值。默认为False,表示不删除缺失值。
  • method:计算相关系数的方法。默认为'pearson',表示使用皮尔逊相关系数。

示例1:计算DataFrame中每一列与指定Series的相关系数

以下是一个计算DataFrame中每一列与指定Series的相关系数的示例:

import pandas as pd# 创建DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

# 创建Series
s = pd.Series([1, 2, 3])

# 计算相关系数
result = df.corrwith(s)

# 输出结果
print(result)

在上的示例中,我们首先创建了一个DataFrame和一个Series。然后,我们使用corrwith函数计算DataFrame中每一列与指定Series的相关系数。最后,我们输出了结果。

示例2:计算DataFrame中每一列与指定DataFrame的相关系数以下是一个计算DataFrame中每一列与指定DataFrame的相关系数的示例:

```python
import pandas as pd

创建DataFrame

df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7 8, 9]})
df2 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

计算相关系数

result = df1.corrwith(df2)

输出结果

print(result)
`

在上面的示例中,我们首先创建了两个DataFrame。然后,我们使用corrwith函数计算df1中每一列与df2的相关系数。最后,我们输出了结果。

总结

本文介绍了pandas.DataFrame.corrwith函数的用法,该函数于计算DataFrame中每一列与指定Series或DataFrame的相关系数。我们提供了两个示例,分别是计算DataFrame中每一与指定Series的相关系数和计算DataFrame中每一列与指定DataFrame的相关系数。在使用该函数时,需要注意参数的设置,特别是axis、drop和method参数。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:解读pandas.DataFrame.corrwith - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python编程给numpy矩阵添加一列方法示例

    以下是关于“Python编程给numpy矩阵添加一列方法示例”的完整攻略。 给numpy矩阵添加一列 在Python中,可以使用numpy库中的concatenate()函数和reshape()函数来给numpy矩阵添加一列。具体步骤如下: 创建一个新的一维数组,作为要添加的列; 使用concatenate()将原矩阵和新数组按列连接; 使用reshape(…

    python 2023年5月14日
    00
  • pycharm怎么使用numpy? pycharm安装numpy库的技巧

    PyCharm怎么使用NumPy?PyCharm安装NumPy库的技巧 NumPy是Python中一个重要的科学计算库,它提供了高效的多维数组对象和各数学函数,是数据科学和机器习领域中不可或缺的工具之一。PyCharm是一款强大的Python集成开发环境,它提供了丰富功能和工具,可以帮助开发者更高效地开发Python应用程序。本攻略将详细介绍PyCharm怎…

    python 2023年5月13日
    00
  • 如何在Windows中安装多个python解释器

    安装多个Python解释器可以帮助我们在不同的Python项目中使用不同版本的Python。在Windows中安装多个Python解释器的方法如下: Step 1: 下载Python解释器 在Python官网上下载多个版本的Python解释器,下载链接为:https://www.python.org/downloads/ Step 2: 安装Python解释…

    python 2023年5月14日
    00
  • python中的随机数 Random介绍

    当处理与概率和统计相关的问题时,很常见需要使用随机数。Python的标准库中有一个名为“random”的模块,它提供了许多生成随机数的方法。在这里,我们将介绍如何在Python中使用随机数,以及这些方法的一些示例用法。 1. 生成随机浮点数 使用random模块中的uniform方法,可以生成一个指定范围内的随机小数。uniform方法接收两个参数:随机数的…

    python 2023年5月14日
    00
  • 基于Python Numpy的数组array和矩阵matrix详解

    以下是关于“基于PythonNumpy的数组array和矩阵matrix详解”的完整攻略。 NumPy简介 NumPy是Python的一个开源库,用于处理N维数组和矩阵。它提供了高效的数组和数学函数,可以用于科学计算、数据分析、机器学习等领域。 数组array 数组是NumPy中最重要的对象之一。它是一个N维数组对象,可以存储相同类型的元素。数组的维数称为秩…

    python 2023年5月14日
    00
  • 对numpy中array和asarray的区别详解

    以下是关于“对numpy中array和asarray的区别详解”的完整攻略。 背景 在使用NumPy时,经常会使用array和asarray函数来创建数组。这两个函数看起来很相似,但实际上有一些区别。本攻略将详细介绍array和asarray函数的区别。 array函数 array函数是NumPy中最基本的数组创建函数之一。它可以将Python列表、元组等序…

    python 2023年5月14日
    00
  • Python numpy多维数组实现原理详解

    Python numpy多维数组实现原理详解 简介 NumPy是Python中用于科学计算的一个重要的库,它提供了高效的多维数组对象array和于数组和量计的函数。本文将详细讲解Python numpy多维数组的实现原理包括多维数组的存储方式、多维数组的引和切片、多维数组的运算和广播,并提供两个示例。 多维数组的存储方式 在NumPy中,多维数组是以行优先的…

    python 2023年5月14日
    00
  • python numpy矩阵信息说明,shape,size,dtype

    以下是关于“Python NumPy矩阵信息说明的完整攻略”。 shape 在NumPy中,shape是一个元组,它表示数组的维度。例如,一个二维数组的shape为(m,n),其中m表示行数,n表示列数。下面是一个示例: import numpy as np # 创建一个二维数组 a = np.array([[1, 2,3], [4, 5, 6]]) # 输…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部