[1]中的程序可以改成如下对应的Tensor形式:

import torch


dtype = torch.FloatTensor
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = torch.randn(N, D_in).type(dtype)
y = torch.randn(N, D_out).type(dtype)

# Randomly initialize weights
w1 = torch.randn(D_in, H).type(dtype)
w2 = torch.randn(H, D_out).type(dtype)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)

    # Compute and print loss 
    loss = (y_pred - y).pow(2).sum()
    print(t, loss) 

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone() # copy一份,硬拷贝 可以用这样的代码测试 a=torch.Tensor(3) b=a.clone() b[2]=100 b[2] b[2] 
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h) #x.t()表示x的转置,x没变;如果想改变x,x.t_() _表示原地操作

    # Update weights using gradient descent
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

有两个函数需要说明 h.clamp(min=0)

clamp表示夹紧,夹住的意思,torch.clamp(input,min,max,out=None)-> Tensor

将input中的元素限制在[min,max]范围内并返回一个Tensor

用法:

pytorch教程[2] Tensor的使用

下面的doc有错误: 应为

torch.clamp(input,min,*,out=None)->Tensor

pytorch教程[2] Tensor的使用