keras实现VGG16 CIFAR10数据集方式

下面是关于“Keras实现VGG16 CIFAR10数据集方式”的完整攻略。

Keras简介

Keras是一个高级神经网络API,它是用Python编写的,可以在TensorFlow、CNTK或Theano等后端上运行。Keras的设计目标是提供一个简单、快速和易于使用的深度学习框架。

Keras的应用

Keras可以用于各种深度学习任务,包括图像分类、目标检测、语音识别、自然语言处理等。下面是两个示例:

示例1:使用Keras实现VGG16进行图像分类

我们将使用Keras实现一个VGG16模型来对CIFAR-10数据集中的图像进行分类。CIFAR-10数据集包含10个类别的60000张32x32彩色图像,每个类别有6000张图像。我们将使用一个简单的VGG16模型来对这些图像进行分类。下面是一个示例:

import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils

# 加载CIFAR-10数据集
(X_train, y_train), (X_test, y_test) = cifar10.load_data()

# 将标签转换为one-hot编码
Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)

# 将像素值归一化到0到1之间
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255

# 定义VGG16模型
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

# 定义优化器和损失函数
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

# 训练模型
model.fit(X_train, Y_train, batch_size=128, epochs=100, validation_data=(X_test, Y_test))

# 在测试集上评估模型
score = model.evaluate(X_test, Y_test, batch_size=128)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

在这个示例中,我们首先使用keras.datasets.cifar10模块加载CIFAR-10数据集,并使用np_utils.to_categorical方法将标签转换为one-hot编码。然后,我们将像素值归一化到0到1之间。

接下来,我们定义了一个名为model的VGG16模型,并使用随机梯度下降(SGD)优化器和交叉熵损失函数进行训练。在每个时期中,我们使用model.fit方法训练模型,并使用validation_data参数在测试集上进行验证。

在训练结束后,我们使用模型对测试数据进行预测,并计算测试准确率。最后,我们打印出测试准确率。

示例2:使用Keras实现VGG16进行图像分类(使用数据增强)

我们将使用Keras实现一个VGG16模型来对CIFAR-10数据集中的图像进行分类,并使用数据增强来提高模型的泛化能力。下面是一个示例:

import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import np_utils

# 加载CIFAR-10数据集
(X_train, y_train), (X_test, y_test) = cifar10.load_data()

# 将标签转换为one-hot编码
Y_train = np_utils.to_categorical(y_train, 10)
Y_test = np_utils.to_categorical(y_test, 10)

# 将像素值归一化到0到1之间
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255

# 定义数据增强器
datagen = ImageDataGenerator(
    featurewise_center=False,
    samplewise_center=False,
    featurewise_std_normalization=False,
    samplewise_std_normalization=False,
    zca_whitening=False,
    rotation_range=0,
    width_shift_range=0.1,
    height_shift_range=0.1,
    horizontal_flip=True,
    vertical_flip=False)

# 定义VGG16模型
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))

# 定义优化器和损失函数
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

# 训练模型
datagen.fit(X_train)
model.fit_generator(datagen.flow(X_train, Y_train, batch_size=128),
                    steps_per_epoch=X_train.shape[0] // 128,
                    epochs=100,
                    validation_data=(X_test, Y_test))

# 在测试集上评估模型
score = model.evaluate(X_test, Y_test, batch_size=128)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

在这个示例中,我们首先使用keras.preprocessing.image.ImageDataGenerator模块定义了一个数据增强器,并使用datagen.fit方法将其应用于训练数据。然后,我们定义了一个名为model的VGG16模型,并使用随机梯度下降(SGD)优化器和交叉熵损失函数进行训练。在每个时期中,我们使用model.fit_generator方法训练模型,并使用validation_data参数在测试集上进行验证。

在训练结束后,我们使用模型对测试数据进行预测,并计算测试准确率。最后,我们打印出测试准确率。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:keras实现VGG16 CIFAR10数据集方式 - Python技术站

(0)
上一篇 2023年4月8日 下午3:40
下一篇 2023年5月15日

相关文章

  • seq2seq keras实现

    seq2seq 是一个 Encoder–Decoder 结构的网络,它的输入是一个序列,输出也是一个序列, Encoder 中将一个可变长度的信号序列变为固定长度的向量表达,Decoder 将这个固定长度的向量变成可变长度的目标的信号序列。 这个结构最重要的地方在于输入序列和输出序列的长度是可变的,可以用于翻译,聊天机器人,句法分析,文本摘要等。 encod…

    Keras 2023年4月8日
    00
  • 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    http://blog.csdn.net/niuwei22007/article/details/49045909

    Keras 2023年4月6日
    00
  • keras使用AutoEncoder对mnist数据降维

    import keras import matplotlib.pyplot as plt from keras.datasets import mnist (x_train, _), (x_test, y_test) = mnist.load_data() x_train = x_train.astype(‘float32’) / 255 x_test = …

    2023年4月5日
    00
  • Keras自定义IOU方式

    下面是关于“Keras自定义IOU方式”的完整攻略。 Keras自定义IOU方式 在Keras中,我们可以使用自定义IOU方式来评估模型的性能。下面是一些示例说明。 示例1:使用自定义IOU方式评估模型性能 from keras import backend as K # 定义自定义IOU函数 def iou(y_true, y_pred): interse…

    Keras 2023年5月15日
    00
  • keras fit_generator 并行

    虽然已经走在 torch boy 的路上了, 还是把碰到的这个坑给记录一下 数据量较小时,我们可直接把整个数据集 load 到内存里,用 model.fit() 来拟合模型。 当数据集过大比如几十个 G 时,内存撑不下,需要用 model.fit_generator 的方式来拟合。 model.fit_generator 一般参数的配置参考官方文档就好,其中…

    Keras 2023年4月8日
    00
  • 卷积神经网络-Python、TensorFlow和Keras p.3的深度学习基础

    欢迎来到一个教程,在这里我们将讨论卷积神经网络(Convnet和CNN),使用其中的一个用我们在上一教程中构建的数据集对狗和猫进行分类。 卷积神经网络通过它在图像数据中的应用而获得了广泛的应用,并且是目前检测图像内容或包含在图像中的最先进的技术。 CNN的基本结构如下:Convolution -> Pooling -> Convolution -…

    2023年4月8日
    00
  • 利用keras进行手写数字识别模型训练,并输出训练准确度

    from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() #train_images 和 train_labels 是训练集 train_images.shape#第一个数字表示图片张数,后面表示图…

    Keras 2023年4月6日
    00
  • keras—多层感知器MLP—MNIST手写数字识别 – AI大道理

    keras—多层感知器MLP—MNIST手写数字识别   一、手写数字识别 现在就来说说如何使用神经网络实现手写数字识别。 在这里我使用mind manager工具绘制了要实现手写数字识别需要的模块以及模块的功能:  其中隐含层节点数量(即神经细胞数量)计算的公式(这只是经验公式,不一定是最佳值):   m=n+l−−−−√+am=n+l+a  m=log2…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部