Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

摘要:本章主要讲解图像直方图相关知识点,包括掩膜直方图和HS直方图,并通过直方图判断黑夜与白天,通过案例分享直方图的实际应用。

本文分享自华为云社区《[Python从零到壹] 五十二.图像增强及运算篇之图像掩膜直方图和HS直方图》,作者: eastmount。

一.图像掩膜直方图

如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算。假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#读取图像
img = cv2.imread('luo.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#设置掩膜
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:300] = 255
masked_img = cv2.bitwise_and(img, img, mask=mask)
#图像直方图计算
hist_full = cv2.calcHist([img], [0], None, [256], [0,256]) #通道[0]-灰度图
#图像直方图计算(含掩膜)
hist_mask = cv2.calcHist([img], [0], mask, [256], [0,256])
plt.figure(figsize=(8, 6))
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#原始图像
plt.subplot(221)
plt.imshow(img_rgb, 'gray')
plt.axis('off')
plt.title("(a)原始图像")
#绘制掩膜
plt.subplot(222)
plt.imshow(mask, 'gray')
plt.axis('off')
plt.title("(b)掩膜")
#绘制掩膜设置后的图像
plt.subplot(223)
plt.imshow(masked_img, 'gray')
plt.axis('off')
plt.title("(c)图像掩膜处理")
#绘制直方图
plt.subplot(224)
plt.plot(hist_full)
plt.plot(hist_mask)
plt.title("(d)直方图曲线")
plt.xlabel("x")
plt.ylabel("y")
plt.show()

其运行结果如图1所示,它使用了一个200×200像素的掩膜进行实验。其中图1(a)表示原始图像,图1(b)表示200×200像素的掩膜,图1©表示原始图像进行掩膜处理,图1(d)表示直方图曲线,蓝色曲线为原始图像的灰度值直方图分布情况,绿色波动更小的曲线为掩膜直方图曲线。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

二.图像HS直方图

为了刻画图像中颜色的直观特性,常常需要分析图像的HSV空间下的直方图特性。HSV空间是由色调(Hue)、饱和度(Saturation)、以及亮度(Value)构成,因此在进行直方图计算时,需要先将源RGB图像转化为HSV颜色空间图像,然后将对应的H和S通道进行单元划分,再其二维空间上计算相对应直方图,再计算直方图空间上的最大值并归一化绘制相应的直方图信息,从而形成色调-饱和度直方图(或H-S直方图)。该直方图通常应用在目标检测、特征分析以及目标特征跟踪等场景[1-2]。

由于H和S分量与人感受颜色的方式是紧密相连,V分量与图像的彩色信息无关,这些特点使得HSV模型非常适合于借助人的视觉系统来感知彩色特性的图像处理算法。

下面的代码是具体的实现代码,使用matplotlib.pyplot库中的imshow()函数来绘制具有不同颜色映射的2D直方图。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('luo.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#图像HSV转换
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
#计算H-S直方图
hist = cv2.calcHist(hsv, [0,1], None, [180,256], [0,180,0,256])
#原始图像
plt.figure(figsize=(8, 6))
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.title("(a)"), plt.axis('off')
#绘制H-S直方图
plt.subplot(122), plt.imshow(hist, interpolation='nearest'), plt.title("(b)")
plt.xlabel("x"), plt.ylabel("y")
plt.show()

图2(a)表示原始输入图像,图2(b)是原图像对应的彩色直方图,其中X轴表示饱和度(S),Y轴表示色调(H)。在直方图中,可以看到H=140和S=130附近的一些高值,它对应于艳丽的色调。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

三.直方图判断白天黑夜

接着讲述一个应用直方图的案例,通过直方图来判断一幅图像是黑夜或白天。常见的方法是通过计算图像的灰度平均值、灰度中值或灰度标准差,再与自定义的阈值进行对比,从而判断是黑夜还是白天[3-4]。

  • 灰度平均值:该值等于图像中所有像素灰度值之和除以图像的像素个数。
  • 灰度中值:对图像中所有像素灰度值进行排序,然后获取所有像素最中间的值,即为灰度中值。
  • 灰度标准差:又常称均方差,是离均差平方的算术平均数的平方根。标准差能反映一个数据集的离散程度,是总体各单位标准值与其平均数离差平方的算术平均数的平方根。如果一幅图看起来灰蒙蒙的, 那灰度标准差就小;如果一幅图看起来很鲜艳,那对比度就很大,标准差也大。

下面的代码是计算灰度“Lena”图的灰度平均值、灰度中值和灰度标准差。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
#函数: 获取图像的灰度平均值
def fun_mean(img, height, width):
 sum_img = 0
 for i in range(height):
 for j in range(width):
 sum_img = sum_img + int(img[i,j])
    mean = sum_img / (height * width)
 return mean
#函数: 获取中位数
def fun_median(data):
    length = len(data)
 data.sort()
 if (length % 2)== 1: 
        z = length // 2
        y = data[z]
 else:
        y = (int(data[length//2]) + int(data[length//2-1])) / 2
 return y
#读取图像
img = cv2.imread('lena-hd.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#计算图像的灰度平均值
mean = fun_mean(grayImage, height, width)
print("灰度平均值:", mean)
#计算图像的灰度中位数
value = grayImage.ravel() #获取所有像素值
median = fun_median(value)
print("灰度中值:", median)
#计算图像的灰度标准差
std = np.std(value, ddof = 1)
print("灰度标准差", std)

其运行结果如图3所示,图3(a)为原始图像,图3(b)为处理结果。其灰度平均值为123,灰度中值为129,灰度标准差为48.39。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

下面讲解另一种用来判断图像是白天还是黑夜的方法,其基本步骤如下:

  • (1)读取原始图像,转换为灰度图,并获取图像的所有像素值;
  • (2)设置灰度阈值并计算该阈值以下的像素个数。比如像素的阈值设置为50,统计低于50的像素值个数;
  • (3)设置比例参数,对比该参数与低于该阈值的像素占比,如果低于参数则预测为白天,高于参数则预测为黑夜。比如该参数设置为0.8,像素的灰度值低于阈值50的个数占整幅图像所有像素个数的90%,则认为该图像偏暗,故预测为黑夜;否则预测为白天。

具体实现的代码如下所示。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
#函数: 判断黑夜或白天
def func_judge(img):
 #获取图像高度和宽度
    height = grayImage.shape[0]
    width = grayImage.shape[1]
 piexs_sum = height * width
 dark_sum = 0 #偏暗像素个数
 dark_prop = 0 #偏暗像素所占比例
 for i in range(height):
 for j in range(width):
 if img[i, j] < 50: #阈值为50
 dark_sum += 1
 #计算比例
 print(dark_sum)
 print(piexs_sum)
 dark_prop = dark_sum * 1.0 / piexs_sum 
 if dark_prop >=0.8:
 print("This picture is dark!", dark_prop)
 else:
 print("This picture is bright!", dark_prop)
#读取图像
img = cv2.imread('day.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#计算256灰度级的图像直方图
hist = cv2.calcHist([grayImage], [0], None, [256], [0,255])
#判断黑夜或白天
func_judge(grayImage)
#显示原始图像和绘制的直方图
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.axis('off'), plt.title("(a)")
plt.subplot(122), plt.plot(hist, color='r'), plt.xlabel("x"), plt.ylabel("y"), plt.title("(b)")
plt.show()

第一张测试图输出的结果如图4所示,其中图4(a)为原始图像,图4(b)为对应直方图曲线。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

最终输出结果为“(‘This picture is bright!’, 0.010082704388303882)”,该预测为白天。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

第二张测试图输出的结果如图6所示,其中图6(a)为原始图像,图6(b)为对应直方图曲线。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

最终输出结果为“(‘This picture is dark!’, 0.8511824175824175)”,该预测为黑夜。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

四.总结

本章主要讲解图像直方图相关知识点,包括掩膜直方图和HS直方图,并通过直方图判断黑夜与白天,通过案例分享直方图的实际应用。希望对您有所帮助,后续将进入图像增强相关知识点。

参考文献:

  • [1]冈萨雷斯. 数字图像处理(第3版)[M]. 北京:电子工业出版社, 2013.
  • [2]张恒博, 欧宗瑛. 一种基于色彩和灰度直方图的图像检索方法[J]. 计算机工程, 2004.
  • [3]Eastmount. [数字图像处理] 四.MFC对话框绘制灰度直方图[EB/OL]. (2015-05-31). https://blog.csdn.net/eastmount/article/details/46237463.
  • [4]ZJE_ANDY. python3+opencv 利用灰度直方图来判断图片的亮暗情况[EB/OL]. (2018-06-20). https://blog.csdn.net/u014453898/article/details/80745987.
  • [5]阮秋琦. 数字图像处理学(第3版)[M]. 北京:电子工业出版社, 2008.
  • [6]Eastmount. [Python图像处理] 十一.灰度直方图概念及OpenCV绘制直方图[EB/OL]. (2018-11-06). https://blog.csdn.net/Eastmount/article/details/83758402.

 

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图 - Python技术站

(0)
上一篇 2023年3月31日 下午9:07
下一篇 2023年3月31日 下午9:08

相关文章

  • 云图说丨初识华为云安全云脑——新一代云安全运营中心

    本文分享自华为云社区《【云图说】 | 第273期 初识华为云安全云脑——新一代云安全运营中心》,作者:阅识风云。 安全云脑(SecMaster)是华为云原生的新一代云安全运营中心,集华为云三十多年安全经验,基于云原生安全,提供云上资产管理、安全态势管理、安全信息和事件管理、安全编排与自动响应等能力,实现提前预防风险、感知安全事件、安全事件自动化闭环。   点…

    云计算 2023年4月18日
    00
  • 一条SQL如何被MySQL架构中的各个组件操作执行的?

    摘要:一条SQL如何被MySQL架构中的各个组件操作执行的,执行器做了什么?存储引擎做了什么?表关联查询是怎么在存储引擎和执行器被分步执行的?本文带你探探究竟! 本文分享自华为云社区《一条SQL如何被MySQL架构中的各个组件操作执行的?》,作者:砖业洋__。 1. 单表查询SQL在MySQL架构中的各个组件的执行过程 简单用一张图说明下,MySQL架构有哪…

    MySQL 2023年5月4日
    00
  • 读书笔记丨理解和学习事务,让你更好地融入云原生时代

    摘要:分布式事务与云原生技术有很强的关联,可以帮助云原生应用程序实现高效的分布式事务处理。 本文分享自华为云社区《理解和学习事务,让你更好地融入云原生时代》,作者: breakDawn。 随着云原生的概念越来越火,服务的架构应该如何发展和演进,成为很多程序员关心的话题。大名鼎鼎的《深入理解java虚拟机》一书作者于21年推出了新作《凤凰架构》,从这本书中可以…

    云计算 2023年5月8日
    00
  • AIGC的阿克琉斯之踵

    摘要:现在,越来越多的企业和个人使用AIGC生成文章、图片、音乐甚至视频等内容,AIGC已经成为一种必备的工具。在游戏和原画师行业,甚至已经出现了第一批因为AI而失业的人。 本文分享自华为云社区《GPT-4发布,AIGC时代的多模态还能走多远?系列之二:AIGC的阿克琉斯之踵》,作者:ModelArts 开发 。 AIGC是继PGC(Professional…

    人工智能概论 2023年4月22日
    00
  • 更安全、更低耗的微服务架构改造之道

    摘要:微服务改造是政企客户云原生演进的重头戏,但如何做到成本低、安全性高、性能不变、方便调用等,却是一门学问。本文讲述华为云Stack的解决之道。 本文分享自华为云社区《【华为云Stack】【大架光临】第17期:更安全、更低耗的微服务架构改造之道》,作者:杨奕 华为云技术规划专家。 在以往的文章《云原生时代,政企混合云场景IT监控和诊断的难点和应对之道》中,…

    云计算 2023年4月17日
    00
  • 盘点Python 中字符串的常用操作

    摘要:盘点 Python 中字符串的几个常用操作,对新手极度的友好。 本文分享自华为云社区《盘点 Python 中字符串的常用操作,对新手极度友好》,作者:TT-千叶 。 在 Python 中字符串的表达方式有四种 一对单引号一对双引号一对三个单引号一对三个双引号a = ‘abc’b= “abc”c = ‘’‘abc’’’d = “”“abc”””print…

    Python开发 2023年4月2日
    00
  • 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

    摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理。 本文分享自华为云社区《[Python图像处理] 二十二.Python图像傅里叶变换原理及实现》,作者:eastmount。 本文主要讲解图像傅里叶变换的相关内容,在数字图像处理中,有两个经典的变换被广泛应用——傅里叶变换和霍夫变换。其中,傅里叶变换主要是将时间域上…

    2023年4月2日
    00
  • 华为云联合多家单位正式开源云原生多沙箱容器运行时Kuasar

    摘要:云原生多沙箱容器运行时Kuasar正式开源。 本文分享自华为云社区《重磅发布!华为云联合多家单位正式开源云原生多沙箱容器运行时Kuasar》,作者:云容器大未来。 当地时间4月21日上午,在荷兰阿姆斯特丹举办的KubeCon + CloudNativeCon Europe 2023云原生峰会上,CNCF董事、华为首席开源联络官任旭东宣布,云原生多沙箱容…

    云计算 2023年4月27日
    00
合作推广
合作推广
分享本页
返回顶部