Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

摘要:本章主要讲解图像直方图相关知识点,包括掩膜直方图和HS直方图,并通过直方图判断黑夜与白天,通过案例分享直方图的实际应用。

本文分享自华为云社区《[Python从零到壹] 五十二.图像增强及运算篇之图像掩膜直方图和HS直方图》,作者: eastmount。

一.图像掩膜直方图

如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算。假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#读取图像
img = cv2.imread('luo.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#设置掩膜
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:300] = 255
masked_img = cv2.bitwise_and(img, img, mask=mask)
#图像直方图计算
hist_full = cv2.calcHist([img], [0], None, [256], [0,256]) #通道[0]-灰度图
#图像直方图计算(含掩膜)
hist_mask = cv2.calcHist([img], [0], mask, [256], [0,256])
plt.figure(figsize=(8, 6))
#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']
#原始图像
plt.subplot(221)
plt.imshow(img_rgb, 'gray')
plt.axis('off')
plt.title("(a)原始图像")
#绘制掩膜
plt.subplot(222)
plt.imshow(mask, 'gray')
plt.axis('off')
plt.title("(b)掩膜")
#绘制掩膜设置后的图像
plt.subplot(223)
plt.imshow(masked_img, 'gray')
plt.axis('off')
plt.title("(c)图像掩膜处理")
#绘制直方图
plt.subplot(224)
plt.plot(hist_full)
plt.plot(hist_mask)
plt.title("(d)直方图曲线")
plt.xlabel("x")
plt.ylabel("y")
plt.show()

其运行结果如图1所示,它使用了一个200×200像素的掩膜进行实验。其中图1(a)表示原始图像,图1(b)表示200×200像素的掩膜,图1©表示原始图像进行掩膜处理,图1(d)表示直方图曲线,蓝色曲线为原始图像的灰度值直方图分布情况,绿色波动更小的曲线为掩膜直方图曲线。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

二.图像HS直方图

为了刻画图像中颜色的直观特性,常常需要分析图像的HSV空间下的直方图特性。HSV空间是由色调(Hue)、饱和度(Saturation)、以及亮度(Value)构成,因此在进行直方图计算时,需要先将源RGB图像转化为HSV颜色空间图像,然后将对应的H和S通道进行单元划分,再其二维空间上计算相对应直方图,再计算直方图空间上的最大值并归一化绘制相应的直方图信息,从而形成色调-饱和度直方图(或H-S直方图)。该直方图通常应用在目标检测、特征分析以及目标特征跟踪等场景[1-2]。

由于H和S分量与人感受颜色的方式是紧密相连,V分量与图像的彩色信息无关,这些特点使得HSV模型非常适合于借助人的视觉系统来感知彩色特性的图像处理算法。

下面的代码是具体的实现代码,使用matplotlib.pyplot库中的imshow()函数来绘制具有不同颜色映射的2D直方图。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('luo.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#图像HSV转换
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
#计算H-S直方图
hist = cv2.calcHist(hsv, [0,1], None, [180,256], [0,180,0,256])
#原始图像
plt.figure(figsize=(8, 6))
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.title("(a)"), plt.axis('off')
#绘制H-S直方图
plt.subplot(122), plt.imshow(hist, interpolation='nearest'), plt.title("(b)")
plt.xlabel("x"), plt.ylabel("y")
plt.show()

图2(a)表示原始输入图像,图2(b)是原图像对应的彩色直方图,其中X轴表示饱和度(S),Y轴表示色调(H)。在直方图中,可以看到H=140和S=130附近的一些高值,它对应于艳丽的色调。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

三.直方图判断白天黑夜

接着讲述一个应用直方图的案例,通过直方图来判断一幅图像是黑夜或白天。常见的方法是通过计算图像的灰度平均值、灰度中值或灰度标准差,再与自定义的阈值进行对比,从而判断是黑夜还是白天[3-4]。

  • 灰度平均值:该值等于图像中所有像素灰度值之和除以图像的像素个数。
  • 灰度中值:对图像中所有像素灰度值进行排序,然后获取所有像素最中间的值,即为灰度中值。
  • 灰度标准差:又常称均方差,是离均差平方的算术平均数的平方根。标准差能反映一个数据集的离散程度,是总体各单位标准值与其平均数离差平方的算术平均数的平方根。如果一幅图看起来灰蒙蒙的, 那灰度标准差就小;如果一幅图看起来很鲜艳,那对比度就很大,标准差也大。

下面的代码是计算灰度“Lena”图的灰度平均值、灰度中值和灰度标准差。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
#函数: 获取图像的灰度平均值
def fun_mean(img, height, width):
 sum_img = 0
 for i in range(height):
 for j in range(width):
 sum_img = sum_img + int(img[i,j])
    mean = sum_img / (height * width)
 return mean
#函数: 获取中位数
def fun_median(data):
    length = len(data)
 data.sort()
 if (length % 2)== 1: 
        z = length // 2
        y = data[z]
 else:
        y = (int(data[length//2]) + int(data[length//2-1])) / 2
 return y
#读取图像
img = cv2.imread('lena-hd.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#计算图像的灰度平均值
mean = fun_mean(grayImage, height, width)
print("灰度平均值:", mean)
#计算图像的灰度中位数
value = grayImage.ravel() #获取所有像素值
median = fun_median(value)
print("灰度中值:", median)
#计算图像的灰度标准差
std = np.std(value, ddof = 1)
print("灰度标准差", std)

其运行结果如图3所示,图3(a)为原始图像,图3(b)为处理结果。其灰度平均值为123,灰度中值为129,灰度标准差为48.39。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

下面讲解另一种用来判断图像是白天还是黑夜的方法,其基本步骤如下:

  • (1)读取原始图像,转换为灰度图,并获取图像的所有像素值;
  • (2)设置灰度阈值并计算该阈值以下的像素个数。比如像素的阈值设置为50,统计低于50的像素值个数;
  • (3)设置比例参数,对比该参数与低于该阈值的像素占比,如果低于参数则预测为白天,高于参数则预测为黑夜。比如该参数设置为0.8,像素的灰度值低于阈值50的个数占整幅图像所有像素个数的90%,则认为该图像偏暗,故预测为黑夜;否则预测为白天。

具体实现的代码如下所示。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np
import matplotlib.pyplot as plt
#函数: 判断黑夜或白天
def func_judge(img):
 #获取图像高度和宽度
    height = grayImage.shape[0]
    width = grayImage.shape[1]
 piexs_sum = height * width
 dark_sum = 0 #偏暗像素个数
 dark_prop = 0 #偏暗像素所占比例
 for i in range(height):
 for j in range(width):
 if img[i, j] < 50: #阈值为50
 dark_sum += 1
 #计算比例
 print(dark_sum)
 print(piexs_sum)
 dark_prop = dark_sum * 1.0 / piexs_sum 
 if dark_prop >=0.8:
 print("This picture is dark!", dark_prop)
 else:
 print("This picture is bright!", dark_prop)
#读取图像
img = cv2.imread('day.png')
#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#计算256灰度级的图像直方图
hist = cv2.calcHist([grayImage], [0], None, [256], [0,255])
#判断黑夜或白天
func_judge(grayImage)
#显示原始图像和绘制的直方图
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.axis('off'), plt.title("(a)")
plt.subplot(122), plt.plot(hist, color='r'), plt.xlabel("x"), plt.ylabel("y"), plt.title("(b)")
plt.show()

第一张测试图输出的结果如图4所示,其中图4(a)为原始图像,图4(b)为对应直方图曲线。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

最终输出结果为“(‘This picture is bright!’, 0.010082704388303882)”,该预测为白天。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

第二张测试图输出的结果如图6所示,其中图6(a)为原始图像,图6(b)为对应直方图曲线。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

最终输出结果为“(‘This picture is dark!’, 0.8511824175824175)”,该预测为黑夜。

Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图

四.总结

本章主要讲解图像直方图相关知识点,包括掩膜直方图和HS直方图,并通过直方图判断黑夜与白天,通过案例分享直方图的实际应用。希望对您有所帮助,后续将进入图像增强相关知识点。

参考文献:

  • [1]冈萨雷斯. 数字图像处理(第3版)[M]. 北京:电子工业出版社, 2013.
  • [2]张恒博, 欧宗瑛. 一种基于色彩和灰度直方图的图像检索方法[J]. 计算机工程, 2004.
  • [3]Eastmount. [数字图像处理] 四.MFC对话框绘制灰度直方图[EB/OL]. (2015-05-31). https://blog.csdn.net/eastmount/article/details/46237463.
  • [4]ZJE_ANDY. python3+opencv 利用灰度直方图来判断图片的亮暗情况[EB/OL]. (2018-06-20). https://blog.csdn.net/u014453898/article/details/80745987.
  • [5]阮秋琦. 数字图像处理学(第3版)[M]. 北京:电子工业出版社, 2008.
  • [6]Eastmount. [Python图像处理] 十一.灰度直方图概念及OpenCV绘制直方图[EB/OL]. (2018-11-06). https://blog.csdn.net/Eastmount/article/details/83758402.

 

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python从零到壹丨图像增强及运算:图像掩膜直方图和HS直方图 - Python技术站

(0)
上一篇 2023年3月31日 下午9:07
下一篇 2023年3月31日 下午9:08

相关文章

  • 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

    摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理。 本文分享自华为云社区《[Python图像处理] 二十二.Python图像傅里叶变换原理及实现》,作者:eastmount。 本文主要讲解图像傅里叶变换的相关内容,在数字图像处理中,有两个经典的变换被广泛应用——傅里叶变换和霍夫变换。其中,傅里叶变换主要是将时间域上…

    2023年4月2日
    00
  • 云原生2.0网关API标准发展趋势

    摘要:Gateway API希望取代Ingress API。 本文分享自华为云社区《云原生2.0网关API标准发展趋势》,作者:华为云云原生团队 。 云原生网关API标准背景及发展现状 Gateway API是一个开源的API标准,源自Kubernetes SIG-NETWORK兴趣组。从出身角度讲,可谓根正苗红,自从开源以来备受关注,被寄予厚望。Gatew…

    云计算 2023年4月20日
    00
  • 读书笔记丨理解和学习事务,让你更好地融入云原生时代

    摘要:分布式事务与云原生技术有很强的关联,可以帮助云原生应用程序实现高效的分布式事务处理。 本文分享自华为云社区《理解和学习事务,让你更好地融入云原生时代》,作者: breakDawn。 随着云原生的概念越来越火,服务的架构应该如何发展和演进,成为很多程序员关心的话题。大名鼎鼎的《深入理解java虚拟机》一书作者于21年推出了新作《凤凰架构》,从这本书中可以…

    云计算 2023年5月8日
    00
  • OpenTiny 跨端、跨框架组件库升级TypeScript,10万行代码重获新生

    摘要:一份精心准备的《JS项目改造TS指南》文档供大家参考,顺便介绍TS 基础知识和 TS 在 Vue 中的实践。 本文分享自华为云社区《历史性的时刻!OpenTiny 跨端、跨框架组件库正式升级 TypeScript,10 万行代码重获新生!》,作者:Kagol。 根据 The Software House 发布的《2022 前端开发市场状态调查报告》数据…

    JavaScript 2023年4月17日
    00
  • Karmada 多云容器编排引擎支持多调度组,助力成本优化

    摘要:Karmada 社区也在持续关注云成本的管理,在最近发布的 v1.5 版本中,支持用户在分发策略 PropagationPolicy/ClusterPropagationPolicy 中设置多个集群调度组,实现将业务调度到成本更低的集群组中去。 本文分享自华为云社区《Karmada 多云容器编排引擎支持多调度组,助力成本优化!》,作者:华为云云原生团队…

    云计算 2023年4月22日
    00
  • GaussDB(DWS)字符串处理函数返回错误结果集排查

    摘要:在使用字符串处理函数时,有时会出现非预期结果的场景。在排除使用问题后,应该从encoding和数据本身开始排查。 本文分享自华为云社区《GaussDB(DWS)字符串处理函数返回错误结果集排查》,作者: -CHEN111- 。 在使用字符串处理函数时,有时会出现非预期结果的场景。在排除使用问题后,应该从encoding和数据本身开始排查。 直接从案例出…

    MySQL 2023年5月6日
    00
  • 云原生容器高可用运维能力应用

    摘要:华为云容器SRE在海量集群和容器运维实践中,从智能运维能力、确定性场景恢复等多方面总结出一套确定性运维实践,以应对云原生业务快速增长。 本文分享自华为云社区《云原生容器高可用运维能力应用》,作者:陈勇/刘志超/袁文峰。 云原生场景下,对架构高可用、应用高可用、基础云平台高可用提出了更高的要求,企业以及云平台都在不断致力于稳定性建设。但面对海量复杂的客户…

    云计算 2023年4月17日
    00
  • 工业互联网:加速从“中国制造”迈向“中国智造”

    摘要:在推进制造业智能化的过程中,除设备本身数字化外,基于工业互联网实现设备互联和全流程智能化已成为最重要方向之一。 本文分享自华为云社区《【华为云Stack】【大架光临】第18期:工业互联网:加速从“中国制造”迈向“中国智造”》,作者:华为云Stack 制造行业总经理 崔新。 随着全球数字化浪潮的到来,中国制造业也在快速转型。国家“十一五”和“十二五”提出…

    云计算 2023年5月4日
    00
合作推广
合作推广
分享本页
返回顶部