代码
import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import keras import numpy as np import matplotlib.pyplot as plt #顺序模型 from keras.models import Sequential #全连接层 from keras.layers import Dense from keras.optimizers import SGD #使用numpy生成100个随机点 x_data = np.linspace(-0.5,0.5,200) noise = np.random.normal(0,0.01,x_data.shape) y_data = np.square(x_data)+noise #显示随机点 plt.scatter(x_data,y_data) plt.show() #构建一个顺序模型 model = Sequential() #在模型中添加一个全连接层 model.add(Dense(units=10,input_dim=1,activation='tanh')) #NOTE:input_dim=10可以省略,Keras默认会赋予正确值 model.add(Dense(units=1,input_dim=10,activation='tanh')) #提高学习率 sgd = SGD(lr=0.3) model.compile(optimizer=sgd,loss='mse') for step in range(3001): #每次训练一个批次 cost = model.train_on_batch(x_data,y_data) #每500次打印一下cost值 if step %500 ==0: print("COST",cost) # x_data输入网络中,得到预测值 y_pred = model.predict(x_data) #显示随机点 plt.scatter(x_data,y_data) plt.plot(x_data,y_pred,'r-',3) plt.show()
拟合效果如下:
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Keras实践:实现非线性回归 - Python技术站