Python Pandas – INNER JOIN和LEFT SEMI JOIN的区别

首先,INNER JOIN和LEFT SEMI JOIN都是数据关联操作,用于根据一个或多个指定的联接键连接两个或多个表或数据框。它们在连接操作的结果上是不同的,下面具体讲解。

  1. INNER JOIN

INNER JOIN是一种基本的联接方式,它只返回两个表中联接键相同的行。它返回的数据包括联接键在两个表中都有的行,即“内部完全匹配”。

例如,有两个数据框df1和df2,它们的结构如下所示:

df1:

   key  value1
0   A      1
1   B      2
2   C      3

df2:

   key  value2
0   A      10
1   D      20
2   E      30

如果我们对df1和df2进行INNER JOIN操作:

pd.merge(df1, df2, on='key', how='inner')

则返回的结果将只包含key在df1和df2中都存在的行,即:

   key  value1  value2
0   A      1      10
  1. LEFT SEMI JOIN

LEFT SEMI JOIN是一种只返回左表中有匹配行的联接方式。它的结果将只包含左表中存在的联接键的行,且没有右表相关的信息。

LEFT SEMI JOIN等价于LEFT JOIN操作,但是只选取右表中包含在联接键中的行,然后把结果集限制在左表中。

例如,仍然使用上述的df1和df2,通过LEFT SEMI JOIN操作:

pd.merge(df1, df2, on='key', how='left')

则返回的结果仅包括df1中存在的联接键A、B和C,右表中的D和E被排除,结果为:

   key  value1  value2
0   A      1      10
1   B      2      NaN
2   C      3      NaN

简单来讲,INNER JOIN返回的结果包含了两个表中完全匹配的行,而LEFT SEMI JOIN仅返回左表中存在的匹配行,右表中不存在的行被排除在外。

以上就是Python Pandas中INNER JOIN和LEFT SEMI JOIN的区别,希望能够帮助到您。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python Pandas – INNER JOIN和LEFT SEMI JOIN的区别 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • python导入pandas具体步骤方法

    Python是一门强力的编程语言,而Pandas是Python社区中一个很优秀的数据处理框架。在进行数据分析时,我们通常需要用到Pandas。本文将详细介绍在Python中导入Pandas的具体步骤,让初学者更轻松地使用Pandas处理数据。 1. 安装Pandas 在使用Pandas之前,你需要首先安装Pandas。你可以使用Python的包管理工具pip…

    python 2023年5月14日
    00
  • Python基础之pandas数据合并

    Python基础之pandas数据合并 Pandas是Python中常用的数据处理和分析库,它提供了丰富的数据结构和数据处理方法。当处理数据时,常常需要将多个数据集合并成一个,这时就需要使用pandas的数据合并功能。 数据合并的基本方法 Pandas中的数据合并主要有三种方法:concat、merge和join。 concat方法:用于在行或列的维度上合并…

    python 2023年5月14日
    00
  • 使用Python预测空气质量指数

    Title: 使用Python预测空气质量指数 空气质量指数(AQI)是衡量空气质量好坏的标准之一,预测空气质量指数是对环境保护的重要工作之一。Python是一种强大的编程语言,能够较方便地处理数据集,因此在预测AQI方面也有很大的应用。 数据获取 首先,我们需要获得空气质量数据集。可在国家环境保护部门网站上获取,也可通过第三方数据提供商获得。这里我们以UC…

    python-answer 2023年3月27日
    00
  • pandas创建DataFrame的7种方法小结

    下面是关于“pandas创建DataFrame的7种方法小结”的详细攻略。 概述 DataFrame是Pandas中最重要的数据结构之一,它将数据组织成列和行的形式,类似于Excel表格。本文将介绍Pandas中不同的方法来创建DataFrame的七种方法。 Pandas创建DataFrame的7种方法小结 以下是Pandas中创建DataFrame的7种方…

    python 2023年5月14日
    00
  • 如何在pandas数据框架中选择多个列

    在Pandas中选择多个列可以使用方括号来实现,即将需要选择的列名放到方括号中作为一个列表。下面为您提供一份完整的攻略: 1. 选择单个列 我们首先要了解如何选择单个列。假设我们有一个数据框架df,其中包含三列:age、gender和income。代码如下: import pandas as pd data = { ‘age’: [25, 21, 29, 3…

    python-answer 2023年3月27日
    00
  • Python 使用Iris数据集的Pandas基础知识

    首先,让我们简单介绍一下Iris数据集。Iris数据集是一个经典的多变量数据集,用于分类和聚类算法的测试和演示,由Fisher在1936年创造,并称为Iris花卉数据集。它包含150个观察值,分别代表三个不同品种的鸢尾花,每个品种包含50个样本。每个样本都包含了萼片长度、萼片宽度、花瓣长度和花瓣宽度四个特征。 接下来,我们将详细介绍如何使用Pandas库来操…

    python-answer 2023年3月27日
    00
  • elasticsearch索引index数据功能源码示例

    让我来为你详细讲解“elasticsearch索引index数据功能源码示例”的完整攻略。 1. 什么是Elasticsearch索引? 在Elasticsearch中,索引被称为数据存储的容器。它是将数据储存到Elasticsearch中的基本单元。我们可以将索引理解为数据库中的表,数据都是存储在表中的。在Elasticsearch中,我们可以通过索引存储…

    python 2023年6月13日
    00
  • pandas的qcut()方法详解

    pandas的qcut()方法详解 1. 什么是qcut()方法 pandas的qcut()方法是用于对数据进行分箱(binning)处理的函数,该函数可以根据指定的分位数(quantile)将数据划分为多个区间(box)。 2. qcut()方法的语法 pandas.qcut(x, q, labels=None, retbins=False, precis…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部