pandas DataFrame.shift()函数的具体使用

pandas提供了许多函数来处理数据集,其中shift()函数就是其中一个非常常用的函数,用于对DataFrame在行方向或列方向上进行位移操作。本篇攻略将详细讲解pandas的shift()函数的具体使用方法,包括函数参数、返回值、使用示例等。

函数参数

shift()函数有如下主要参数:

  • periods: 整数,指定位移的距离,正数表示向下移动,负数表示向上移动。默认为1。
  • axis: 整数或字符串,指定是沿着行方向(轴0)还是列方向(轴1)进行位移,默认为0。
  • fill_value: 数值或者字典,用于填充缺失值。如果不指定,默认使用原始数据,即生成缺失值。
  • freq: Offsets对象或字符串,用于指定时间序列数据的频率。默认为None。
  • axis_name: 字符串,用于指定轴名称。默认为None。

返回值

shift()函数的返回值是新的DataFrame对象,它与原始的DataFrame对象拥有相同的形状和列标签,但是数据被偏移了指定的距离。

使用示例

下面提供两个具体的示例,分别是对DataFrame在行方向和列方向上进行位移操作。

示例一:对DataFrame在行方向上进行位移

import pandas as pd

# 构造数据
df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10]})

# 对DataFrame进行行方向位移
df_shift = df.shift(3, axis=0)

# 输出结果
print(df_shift)

输出如下:

     A    B
0  NaN  NaN
1  NaN  NaN
2  NaN  NaN
3  1.0  6.0
4  2.0  7.0

从结果可以看出,DataFrame对象在行方向上被向下移动了3行,前3行的数据被填充为NaN。

示例二:对DataFrame在列方向上进行位移

import pandas as pd

# 构造数据
df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [6, 7, 8, 9, 10], 'C': [11, 12, 13, 14, 15]})

# 对DataFrame进行列方向位移
df_shift = df.shift(2, axis=1)

# 输出结果
print(df_shift)

输出如下:

     A    B     C
0  NaN  NaN   1.0
1  NaN  NaN   2.0
2  NaN  NaN   3.0
3  4.0  6.0   4.0
4  5.0  7.0   5.0

从结果可以看出,DataFrame对象在列方向上被向右移动了2列,前2列的数据被填充为NaN。

总结

以上就是pandas的shift()函数的详细讲解。使用shift()函数能够很方便地对DataFrame对象在行或列方向上进行位移操作,用于操作时间序列数据的时候尤为实用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas DataFrame.shift()函数的具体使用 - Python技术站

(1)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python word2vec训练词向量实例分析讲解

    下面是详细讲解“Python word2vec训练词向量实例分析讲解”的完整攻略。 1. 前置知识 在学习 Python word2vec 训练词向量之前,需要先了解以下内容: Python 基础语法 Numpy、Pandas、Scikit-learn 等常用 Python 库 词向量的概念和基本原理 2. 训练流程 下面介绍如何使用 Python 训练词向…

    python 2023年5月14日
    00
  • pandas学习之df.fillna的具体使用

    下面是Pandas学习之df.fillna的具体使用攻略: 1. 前言 在数据处理和分析过程中,经常会遇到缺失值的情况,如何处理这些缺失值就要用到Pandas库的fillna()方法。fill()方法可以将数据框(DataFrame)中的缺失值(NA)替换为指定的值或方法计算的值,从而使得缺失值不影响后续数据操作和计算。本文将详细介绍Pandas库的fill…

    python 2023年5月14日
    00
  • Python中的pandas.eval()函数

    Python中的pandas.eval()函数是一个高效的计算函数,可以用来计算一些比较复杂的表达式。pandas.eval()函数将一个字符串表达式转化成pandas表达式进行计算,比较适用于大型数据集,而且计算速度非常快。 pandas.eval()函数有以下几个优点:1. 高效:它利用了pandas底层的numexpr引擎来对表达式进行优化计算,能够更…

    python-answer 2023年3月27日
    00
  • 在Pandas数据框架中添加带有默认值的列

    在 Pandas 数据框架中添加带有默认值的列,我们可以通过以下步骤实现。 首先,我们需要导入 Pandas 库,并创建一个示例数据框架。 import pandas as pd # 创建示例数据框架 df = pd.DataFrame({‘name’:[‘Alice’, ‘Bob’, ‘Charlie’], ‘age’:[25, 30, 35]}) pri…

    python-answer 2023年3月27日
    00
  • python plotly绘制直方图实例详解

    下面我将为你详细讲解“python plotly绘制直方图实例详解”的完整攻略。 1. 什么是plotly Plotly是一个基于Python的交互式可视化库,适合用于生成各种类型的图标,包括线图、散点图、面积图、柱状图、热力图、3D图等等。该库特别注重交互性,支持对图表进行缩放、平移、旋转等操作,也可以与D3.js进行无缝协作。 2. 需要安装的库和工具 …

    python 2023年6月13日
    00
  • Python对多属性的重复数据去重实例

    下面我将详细讲解一下“Python对多属性的重复数据去重实例”的完整攻略。 1. 方案概述 在数据处理过程中,我们常常会遇到重复数据去重的需求。当涉及到多个属性的数据去重时,传统方法可能会变得有些棘手。这时候,可以使用Python语言来进行多属性重复数据去重。 常见的多属性重复数据去重方法有两种,分别是: 使用pandas库:pandas是Python中一个…

    python 2023年6月13日
    00
  • 使用pandas的DataFrame的plot方法绘制图像的实例

    下面是使用pandas的DataFrame的plot方法绘制图像的完整攻略。 1. 导入必要的库 首先要导入pandas和matplotlib库,以便进行数据分析和图像绘制。代码如下: import pandas as pd import matplotlib.pyplot as plt %matplotlib inline 其中%matplotlib in…

    python 2023年5月14日
    00
  • 浅析pandas随机排列与随机抽样

    浅析pandas随机排列与随机抽样 1. pandas随机排列 pandas提供了一个sample()方法来对DataFrame和Series进行随机排列。sample()方法接受一个整数参数n,表示随机抽取的数量,默认为1,也可以为float类型,表示百分比。以下示例展示如何对DataFrame进行随机排列: import pandas as pd df …

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部