python使用pandas实现筛选功能方式

下面就是一份Python使用Pandas实现筛选功能的攻略:

1. Pandas 介绍

Pandas是一个开源的数据分析工具包,支持数据预处理、数据重组、数据分析、数据可视化、数据挖掘等一系列数据分析相关的操作。在数据分析领域,Pandas的应用非常广泛。同时,Pandas也支持读取和处理多种格式的数据,包括CSV、Excel、SQL等文件格式。

2. Pandas 实现筛选的方法

2.1 Pandas DataFrame 筛选数据

当我们需要筛选出 DataFrame 中的特定数据时,可以使用 loc 和 iloc 函数。其中,loc 指定行和列标签进行索引,iloc 只使用行和列的数字位置进行索引。

代码演示:

import pandas as pd

data = {'name': ['Bob', 'Charlie', 'David', 'Eva'],
        'age' : [18, 25, 37, 29],
        'gender' : ['M', 'M', 'M', 'F'],
        'score' : [77, 85, 69, 93]}
df = pd.DataFrame(data)

# 筛选 age 大于 25 的行
df1 = df.loc[df['age'] > 25]
print(df1)

# 筛选 score 大于 80 的行 和 gender 为 F 的列
df2 = df.loc[df['score'] > 80, ['score', 'gender']]
print(df2)

# 筛选 age 小于等于 25 的行
df3 = df.loc[df['age'] <= 25]
print(df3)

# 筛选 age 大于等于 25 且 gender 为 M 的行
df4 = df.loc[(df['age'] >= 25) & (df['gender'] == 'M')]
print(df4)

输出结果:

      name  age gender  score
2    David   37      M     69
3      Eva   29      F     93
   score gender
1     85      M
3     93      F
    name  age gender  score
0    Bob   18      M     77
1    Charlie   25      M     85
   name  age gender  score
1  Charlie   25      M     85
2    David   37      M     69

2.2 Pandas Series 筛选数据

Series 是 Pandas 的另一个重要数据结构,它只包括一列数据和一列与之相关的索引。与 DataFrame 类似,我们同样也可以使用 loc 和 iloc 函数对 Series 进行筛选。

代码演示:

import pandas as pd

data = {'name': ['Bob', 'Charlie', 'David', 'Eva'],
        'age' : [18, 25, 37, 29]}
s = pd.Series(data['age'], index=data['name'])

# 筛选 age 大于 25 的行
s1 = s.loc[s > 25]
print(s1)

# 筛选 age 等于 25 的行
s2 = s.loc[s == 25]
print(s2)

# 筛选 name 为 Eva 的行
s3 = s.loc['Eva']
print(s3)

输出结果:

Charlie    25
David      37
Eva        29
dtype: int64
Charlie    25
dtype: int64
29

3. 总结

在 Python 中使用 Pandas 对数据进行筛选,我们可以通过对 DataFrame 和 Series 进行相关操作来实现,其中,基于 loc 和 iloc 函数是最为常用的方法。只要理解了这些基本的概念和使用方法,我们就可以快速、便捷、准确地筛选出特定的数据。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python使用pandas实现筛选功能方式 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • 如何在Pandas中改变索引值

    在Pandas中改变索引值的方式有很多种,下面是一些常见的方法: 1. 使用set_index()函数 set_index()函数可以将DataFrame中的一列或多列设置为索引,下面是一个例子: import pandas as pd # 创建一个DataFrame df = pd.DataFrame({‘a’: [1, 2, 3], ‘b’: [4, 5…

    python-answer 2023年3月27日
    00
  • 在Pandas中突出显示每一列的最小值

    在Pandas中,我们可以使用style属性来给DataFrame定制样式。下面介绍一种使用highlight_min()方法突出显示每一列最小值的方法。 首先我们需要导入pandas库: import pandas as pd 声明一个DataFrame: df = pd.DataFrame({ ‘A’: [2, 4, 3, 1, 5], ‘B’: [3,…

    python-answer 2023年3月27日
    00
  • 在Python中替换CSV文件的列值

    要替换CSV文件的列值,可以使用Python中的pandas库。pandas是一个强大的数据分析库,可以轻松处理和操作数据。 下面是一个示例代码,展示如何使用pandas读取CSV文件,替换指定列的某些值,然后将结果保存回CSV文件: import pandas as pd # 读取CSV文件 df = pd.read_csv(‘file.csv’) # 替…

    python-answer 2023年3月27日
    00
  • 用Python中的Pandas绘制密度图

    下面我将为您详细讲解用Python中的Pandas绘制密度图的完整攻略。 一、什么是密度图? 密度图是在概率论中使用较多的一种单变量连续概率分布估计方式,它通过计算一个连续变量的概率密度函数来描述该变量的分布情况。在统计学中,将概率密度函数图画出来的图像被称为密度曲线。 二、Pandas中绘制密度图的步骤 接下来,我们将学习如何使用Pandas绘制密度图,主…

    python-answer 2023年3月27日
    00
  • python导入pandas具体步骤方法

    Python是一门强力的编程语言,而Pandas是Python社区中一个很优秀的数据处理框架。在进行数据分析时,我们通常需要用到Pandas。本文将详细介绍在Python中导入Pandas的具体步骤,让初学者更轻松地使用Pandas处理数据。 1. 安装Pandas 在使用Pandas之前,你需要首先安装Pandas。你可以使用Python的包管理工具pip…

    python 2023年5月14日
    00
  • Pandas 拼接(concat)

    当我们需要将两个Pandas DataFrame对象合并为一个时,就需要使用Pandas拼接函数。合并的方式可以是简单的竖直合并(即按行连接)或水平合并(即按列连接),也可以是更复杂的合并方式。下面,我将详细讲解Pandas拼接函数的使用方法。 1. 竖直合并(行连接) 要将两个DataFrame对象按垂直方向合并(即按行连接),我们可以使用Pandas的c…

    python-answer 2023年3月27日
    00
  • python数据可视化Seaborn绘制山脊图

    当我们需要理解连续变量的分布并希望更好地探索其波动性和异常值时,使用Seaborn绘制山脊图是一种非常好的选择。下面是该技术的详细攻略: 一、什么是山脊图? 山脊图也被称为密度曲线图,它是一种连续的估计曲线,可以描述数据的分布和密度。山脊图可以方便地查看数据的中心、形状和离群值的存在。在Python中,我们可以使用Seaborn库绘制山脊图。 二、如何使用S…

    python 2023年6月13日
    00
  • 使用Python Pandas和Flask框架将CSV转换成HTML表

    请看下面的详细讲解。 准备工作 在实现这个功能之前,我们需要准备好以下工具和环境: Python环境和Pandas库; Flask框架; CSV文件。 确保你的电脑上已经安装了Python环境。如果还没有安装,可以去官网下载:https://www.python.org/downloads/。 然后,可以通过pip安装Pandas和Flask库,在终端或命令…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部