在运行并且训练出一个模型后获得了模型的结构与许多参数,为了防止再次训练以及需要更好地去使用,我们需要保存当前状态
基本保存方式 h5
# 此处假设model为一个已经训练好的模型类
model.save('my_model.h5')
转换为json格式存储基本参数
# 此处假设model为一个已经训练好的模型类
json_string = model.to_json()
open('my_model_architecture.json','w').write(json_string)
转换为二进制pb格式
以下代码为我从网络中寻找到的,可以将模型中的内容转换为pb格式,但需要更改其中的h5为你的模型的h5
import sys \\
from keras.models import load_model \\
import tensorflow as tf
import os
import os.path as osp
from keras import backend as K
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session, input_graph_def,output_names,freeze_var_names)
return frozen_graph
input_fld = sys.path[0]
weight_file = 'my_model.h5'
output_graph_name = 'tensor_model.pb'
output_fld = input_fld + '/tensorflow_model/'
if not os.path.isdir(output_fld):
os.mkdir(output_fld)
weight_file_path = osp.join(input_fld, weight_file)
K.set_learning_phase(0)
net_model = load_model(weight_file_path)
print('input is :', net_model.input.name)
print ('output is:', net_model.output.name)
sess = K.get_session()
frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name])
from tensorflow.python.framework import graph_io
graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)
print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Keras模型的保存方式 - Python技术站