tensorflow
-
Win10下用Anaconda安装TensorFlow
笔者之前在学习TensorFlow,也在自己的笔记本上完成了安装,在PyCharm中进行学习。但是最近为了使用Python的科学计算环境,我把之前的环境卸载了,并用Anaconda重新安装了TensorFlow,这里介绍一下cpu版本的安装方法。 前提检查: 在 https://developer.nvidia.com/cuda-gpus 确认你的显卡支持 …
-
linux中安装tensorflow
liunxsudo apt-get install python-pip python-dev python2.X -> pippython3.X -> pip3 pip –versionpip install –upgrade pippip –versionpip3 –version pip install –upgrade http…
-
Ubuntu安装配置Tensorflow-GPU
Ubuntu 16.04 + GTX 1080 Ti + CUDA 9.0 + Cudnn 7.1 安装配置 Download Ubuntu16.04: mirrors.aliyun.com/ubuntu-releases/16.04 | or 18.04 CUDA与CUDNN版本对应关系,可参考该链接: https://blog.csdn.…
-
语义分割之车道线检测Lanenet(tensorflow版)
Lanenet 一个端到端的网络,包含Lanenet+HNet两个网络模型,其中,Lanenet完成对车道线的实例分割,HNet是一个小网络结构,负责预测变换矩阵H,使用转换矩阵H对同属一条车道线的所有像素点进行重新建模 将语义分割和对像素进行向量表示结合起来的多任务模型,最近利用聚类完成对车道线的实例分割。 将实例分割任务拆解成语义分割…
-
(原创)使用tensorflow及anaconda(spyder)时遇到的问题
(1)问题一:如何在tensorflow环境下使用spyder 答:在anaconda navigator中environment中搜索tensorflow,安装适合tensorflow的spyder (2)问题二:在在tensorflow环境下使用spyder时有些库文件(比如matplotlib)显示no module,如何解决 答:anaconda下已…
-
tensorflow– Dataset创建数据集对象
tf.data模块包含: experimental 模块 Dataset 类 FixedLengthRecordDataset 类 TFRecordDataset 类 TextLineDataset 类 1 # author by FH. 2 # OverView: 3 # tf.data 4 # experimental —Modules 5 #…
-
tensorflow softmax_cross_entropy_with_logits函数
1、softmax_cross_entropy_with_logits tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 解释:这个函数的作用是计算 logits 经 softmax 函数激活之后的交叉熵。 对于每个独立的分类任务,这个函数是去度量概率误差。比如,在 CIFA…
-
tensorflow l2_normalize函数
1、l2_normalize函数 tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) 解释:这个函数的作用是利用 L2 范数对指定维度 dim 进行标准化。 比如,对于一个一维的张量,指定维度 dim = 0,那么计算结果为: output = x / sqrt( max( sum( x ** 2 ) ,…
-
tensorflow bias_add应用
import tensorflow as tf a=tf.constant([[1,1],[2,2],[3,3]],dtype=tf.float32) b=tf.constant([1,-1],dtype=tf.float32) c=tf.constant([1],dtype=tf.float32) with tf.Session() as sess: pr…
-
tensorflow softplus应用
1、softplus函数表达式 图像: 2、tensorflow 举例 import tensorflow as tf input=tf.constant([0,1,2,3],dtype=tf.float32) output=tf.nn.softplus(input) with tf.Session() as sess: print(‘input:’) …