tensorflow
-
tensorflow学习之(六)使用tensorboard展示神经网络的graph
# 创建神经网络, 使用tensorboard 展示graph import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 若没有 pip install matplotlib # 定义一个神经层 def add_layer(inputs, in_size, out…
-
tensorflow学习之(八)使用dropout解决overfitting(过拟合)问题
#使用dropout解决overfitting(过拟合)问题 #如果有dropout,在feed_dict的参数中一定要加入dropout的值 import tensorflow as tf from sklearn.datasets import load_digits from sklearn.cross_validation import train_…
-
tensorflow学习之(七)使用tensorboard 展示神经网络的graph/histogram/scalar
# 创建神经网络, 使用tensorboard 展示graph/histogram/scalar import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 若没有 pip install matplotlib # 定义一个神经层 def add_layer(inp…
-
Tensorflow – tf常用函数使用(持续更新中)
本人较懒,故间断更新下常用的tf函数以供参考: reduce_sum( ) 个人理解是降维求和函数,在 tensorflow 里面,计算的都是 tensor,可以通过调整 axis 的维度来控制求和维度。 参数: input_tensor:要减少的张量.应该有数字类型. axis:要减小的尺寸.如果为None(默认),则缩小所有尺寸.必须在范围[-ra…
-
tensorflow-gpu-2.0 安装问题记载
1.setuptools 版本过旧需要更新 ERROR: tensorboard 2.0.0 has requirement setuptools>=41.0.0, but you’ll have set uptools 36.5.0.post20170921 which is incompatible. 解决方式: pip install –u…
-
TensorFlow、把数字标签转化成onehot标签
用sklearn 最方便: 在MNIST手写字数据集中,我们导入的数据和标签都是预先处理好的,但是在实际的训练中,数据和标签往往需要自己进行处理。 以手写数字识别为例,我们需要将0-9共十个数字标签转化成onehot标签。例如:数字标签“6”转化为onehot标签就是[0,0,0,0,0,0,1,0,0,0]. 首先获取需要处理的标签的个数: b…
-
tensorflow 与cuda、cudnn的对应版本关系
来源:https://www.cnblogs.com/zzb-Dream-90Time/p/9688330.html
-
TensorFlow2.0.0 环境配置
windows10 + Anconda + CUDA10.0 + cudnn + TensorFlow2.0.0 安装过程中,最重要的是将版本对应起来 Anaconda 安装 通过安装anaconda软件,可以同时获得 Python 解释器、包管理,虚拟环境等一系列的便捷功能,尤其是当你需要不同的 python版本时,很方便创建。 这个去官网下载就可以了: …
-
Tensorflow 模型的保存、读取和冻结、执行
转载自https://www.jarvis73.cn/2018/04/25/Tensorflow-Model-Save-Read/ 本文假设读者已经懂得了 Tensorflow 的一些基础概念, 如果不懂, 则移步 TF 官网 . 在 Tensorflow 中我们一般使用 tf.train.Saver() 定义的存储器对象来保存模型, 并得到形如下面列表的文…
-
tensorflow实现二分类
读万卷书,不如行万里路。之前看了不少机器学习方面的书籍,但是实战很少。这次因为项目接触到tensorflow,用一个最简单的深层神经网络实现分类和回归任务。 首先说分类任务,分类任务的两个思路: 如果是多分类,输出层为计算出的预测值Z3(1,classes),可以利用softmax交叉熵损失函数,将Z3中的值转化为概率值,概率值最大的即为预测值。 在tens…