机器学习
-
Spark MLlib编程API入门系列之特征选择之向量选择(VectorSlicer) 机器学习概念之特征选择(Feature selection)之VectorSlicer算法介绍
不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择)。 VectorSlicer用于从原来的特征向量中切割一部分,形成新的特征向量,比如,原来的特征向量长度为10,我们希望切割其中的5~10作为新的特征向量,使用Vector…
-
白话机器学习的数学笔记系列1算法回归_一元回归+多项式回归
纯小白的第一本入门书目前这个系列的笔记已经在onenote上写完啦先发一篇试试吧~如果受欢迎就把后续的都发了
-
白话机器学习的数学笔记系列8代码实现_一元回归
先发这几个吧,其他的等有空再编辑好发出来…欢迎大家指出我的错误哈~
-
机器学习-数据可视化神器matplotlib学习之路(五)
这次准备做一下pandas在画图中的应用,要做数据分析的话这个更为实用,本次要用到的数据是pthon机器学习库sklearn中一组叫iris花的数据,里面组要有4个特征,分别是萼片长度、萼片宽度、花瓣长度、花瓣宽度,目标值是3种不同类型的花。 机器学习的时候在学习好这四个特征后就可以用来预测花的类型了,而图像化分析这些数据就是机器学习中很关键的步骤,接下来我…
-
机器学习-逻辑回归与线性回归
logistic回归与线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model)。这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归。logis…
-
机器学习-样本不均衡问题处理
在机器学习中,我们获取的数据往往存在一个问题,就是样本不均匀。比如你有一个样本集合,正例有9900个,负例100个,训练的结果往往是很差的,因为这个模型总趋近于是正例的。 就算全是正那么,也有99%的准确率,看起来挺不错的,但是我们要预测的负样本很可能一个都预测不出来。 这种情况,在机器学习中有三个处理办法,过采样、欠采样、再平衡(再缩放) 过采样:增加…
-
机器学习-数据可视化神器matplotlib学习之路(四)
今天画一下3D图像,首先的另外引用一个包 from mpl_toolkits.mplot3d import Axes3D,接下来画一个球体,首先来看看球体的参数方程吧 (0≤θ≤2π,0≤φ≤π) 然后就可以上代码了: from matplotlib import pyplot as plt import numpy as np from mpl_toolk…
-
keras 机器学习之hellocat学习详解
在通过该例子学习时https://github.com/erikreppel/visualizing_cnns,使用matplotlib中自带的imread读取图片,执行卷积运算后,发现猫的图片细节都有保存,对比例子中的CV2中的imread,怀疑是matplotlib中执行imread后执行了正规化的操作,所以卷积运算没有丢失细节信息。 在对图片…