机器学习
-
机器学习10k均值
下面介绍无监督机器学习算法,与前面分类回归不一样的是,这个不知道目标变量是什么,这个问题解决的是我们从这些样本中,我们能发现什么。 这下面主要讲述了聚类算法,跟数据挖掘中的关联挖掘中的两个主要算法。 K均值算法工作流程,首先随机确定k个初始点作为质心。然后将数据集中的每个点分配到一个簇中。 具体的讲就是为每个点找到最近的质心,并将其分配给该质心所对应的簇,这…
-
机器学习4logistic回归
对于线性回归、logistic回归,在以前准备学习深度学习的时候看过一点,当时的数学基础有点薄弱,虽然现在还是有点差,当时看到神经网络之后就看不下去了。 不过这次是通过python对logistic回归进行编码实现。 线性回归跟逻辑回归介绍就不多说了。网上有很多很好的讲解。另外我之前也写过自己学习斯坦福Andrew.Ng的课程的笔记,如下: http://w…
-
机器学习9树回归
在前面线性回归,线性回归要拟合全部样本,这个是不显示的,因为问题不一定就是线性模型,其中一种可行的方法是将数据集切分成多分易建模的数据,然后利用前面线性回归的方法来建模。如果第一个切分之后的数据还不好拟合的话,那就继续切分。 这就是决策树中一种叫分类回归树CART。这个算法即可以用于分类也可以用于回归。 在这个学习中,介绍了树剪枝算法。 CART算法实现 先…
-
机器学习11关联规则
理解置信度、支持度的定义以及最小置信度和最小支持度。 这几个概念要搞明白。 我们要做的事情就是在数据集中找出所有支持度大于最小支持度,置信度大于最小置信度的关联规则。 关联规则的挖掘所面临的问题就是数据量大,则如何提高算法的效率就是我们主要要解决的问题。 另外一个概念就是频繁项集,支持度大于最小支持度的数据项集就是频繁项集。 由于置信度通过支持度就可以求出,…
-
[机器学习]-Adaboost提升算法从原理到实践
转发 from http://www.cnblogs.com/NextNight/p/6227526.html 1.基本思想: 综合某些专家的判断,往往要比一个专家单独的判断要好。在”强可学习”和”弱可学习”的概念上来说就是我们通过对多个弱可学习的算法进行”组合提升或者说是强化”得到一个性能赶超强可学习算法的算法。如何地这些弱算法进行提升是关键!AdaBo…
-
KNN算法 机器学习中的相似性度量
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的有监督方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分…
-
《机器学习理论、方法及应用》研读(1)
机器学习的概念 学习:可以从不同角度对学习给出解释,但是都包含了知识获取和能力改善这两个主要方面。因此给学习如下一般的解释:学习是一个有特定目的的知识获取和能力增长过程,其内在行为是获得知识、积累经验发现规律等,其外部表现是改进性能、适应环境、实现自我完善等。 机器学习:机器学习是一门研究怎样用计算机来模拟或实现人类学习活动的学科,是计算机科学、数学、心理学…
-
机器学习-数据可视化神器matplotlib学习之路(一)
直接上代码吧,说明写在备注就好了,这次主要学习一下基本的画图方法和常用的图例图标等 from matplotlib import pyplot as plt import numpy as np #这里是最最基本的代码了 #x轴-2到2均分50个点 x = np.linspace(-2, 2, 50) y = x**2 plt.plot(x, y) plt.…
-
机器学习-数据可视化神器matplotlib学习之路(三)
之前学习了一些通用的画图方法和技巧,这次就学一下其它各种不同类型的图。好了先从散点图开始,上代码: from matplotlib import pyplot as plt import numpy as np n = 1024 #生成1024个点 x = np.random.normal(0, 1, n) #正态分布x坐标,均值0标准差1 y = np.r…
-
机器学习模型ML
“其实我是做机器学习模型的。” “什么模型?拿出来给大家看看啊!” 如果你是一个机器学习(ML)程序员,向爸妈、亲友或者客户介绍自己的职业时,可能会遇到这样的尴尬。 现在有了斯坦福大学出品的 Gradio ,你真的可以把自己的ML模型“搬”出来了。 只需几行代码,你就可以创建一个简单的网页,即使完全不会代码的爸妈,也能用拖拽操作体验你的ML模型。 除此之外,…