GAN生成对抗网络
-
生成对抗网络(GAN)相关链接汇总
创始人的介绍: “GANs之父”Goodfellow 38分钟视频亲授:如何完善生成对抗网络?(上) “GAN之父”Goodfellow与网友互动:关于GAN的11个问题(附视频) 进一步了解,应用领域扩展: 生成对抗网络GANs理解(附代码) 对该文章的转载补充:对生成对抗网络GANs原理、实现过程、应用场景的理解(附代码),另附:深度学习大神文…
-
原始的生成对抗网络GAN
论文地址:https://arxiv.org/pdf/1406.2661.pdf 1、简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假),真假也不过是人们定义的概率而已。 生成模型:生成模型要做什么呢,同样也…
-
利用tensorflow训练简单的生成对抗网络GAN
对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的。 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程。整个网络训练的过程中, 两个模块的分工 判断网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率…
-
说说GAN(生成式对抗网络)
在Auto-encoder中,input data通过一个encoder神经网络得到一个维度的较低的向量,称这个向量为code,code经过一个decoder神经网络后输出一个output data。encoder 网络的作用是用来发现给定数据的压缩表示。decoder网络使原始输入的尽可能地相同的重建的表示。在训练时,decoder 强迫 auto-enc…
-
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是gan Generative model G用来生成样本 Discriminative model D用来区别G生成样本的真假 G努力的方向是生成出以假乱真的样本,…