Caffe
-
[置顶] caffe+CPU︱虚拟机+Ubuntu16.04+CPU+caffe安装笔记
由于虚拟机下的Ubuntu系统一般不包含GPU,故这次安装时为了在无GUP环境下运行caffe。所以只需安装CPU版本的caffe 由于本机是window10系统,所以想尝试caffe就在自己电脑上整了一个虚拟机(详情可见:win10系统搭建虚拟机:VMware Workstation Player 12环境+Ubuntu Kylin 16.04 LTS系…
-
Caffe学习系列(17): blob
对于blob.h文件。 先看成员变量。定义了6个保护的成员变量,包括前、后向传播的数据,新、旧形状数据(?), 数据个数及容量。 再看成员函数。包括构造函数(4个参数),reshape(改变blob形状),以及很多inline函数。 #ifndef CAFFE_BLOB_HPP_ #define CAFFE_BLOB_HPP_ #include &l…
-
caffe_ssd create_data.sh 遇到的问题
编辑时间: 2017-12-27 21:42:26 问题一: $./create_data.sh Traceback (most recent call last): File “$(HOME)/workspace/deep_learning/caffe_ssd/data/VOC0712/../../scripts/create_annoset…
-
[caffe]深度学习之图像分类模型VGG解读
vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper。跟googlenet不同的是。vgg继承了lenet以及alexnet的一些框架。尤其是跟alexnet框架很像。vgg也是5个group的卷积、2层fc图像特征、一层fc分类特征,能够看做和alexnet一样总共8个part。依据前5个卷积g…
-
画caffe训练loss曲线
Linux下操作 1. 将loss值存储到lossInf.txt中 fName1=’loss.txt’ cat loss.log | grep “solver.cpp:218] Iteration” | awk ‘{print $9}’ > $fName1 2. Python画出loss曲线 fName2=./loss.txt python sho…
-
caffe实现多任务学习
Github: https://github.com/Haiyang21/Caffe_MultiLabel_Classification Blogs 1. 采用多label的lmdb+Slice Layer的方法 http://blog.csdn.net/u013010889/article/details/53098346 2. 修改数据层方法 http…
-
py-faster-rcnn(running the demo): ubuntu14.04+caffe+cuda7.5+cudnn5.1.3+python2.7环境搭建记录
第一次写博客,以此纪念这几天安装caffe,跑faster-rcnn的血泪史.在此特别感谢网络各路大神,来自全球各地,让我能从中汲取营养,吸取经验,总结规律. faster-rcnn分为matlab版本和python版本,首先记录弄python版本的环境搭建过程.matlab版本见另一篇:faster-rcnn(testing): ubuntu14.04+c…
-
TensorRT加速 ——NVIDIA终端AI芯片加速用,可以直接利用caffe或TensorFlow生成的模型来predict(inference)
官网:https://developer.nvidia.com/tensorrt 作用:NVIDIA TensorRT™ is a high-performance deep learning inference optimizer and runtime that delivers low latency, high-throughput inferenc…
-
寒武纪芯片——有自己的SDK,支持tf、caffe、MXNet
寒武纪芯片 产品中心>智能处理器IP 智能处理器IP MLU智能芯片 软件开发环境 Cambricon-1A 高性能硬件架构及软件支持兼容Caffe、Tensorflow、MXnet等主流AI开发平台,已多次成功流片 国际上首个成功商用的深度学习处理器IP产品,可广泛应用于计算机视觉、语音识别、自然语言处理等智能处理关键领域。 Cambricon-1H…
-
Caffe学习系列(12):不同格式下计算图片的均值和caffe.proto
均值是所有训练样本的均值,减去之后再进行训练会提高其速度和精度。 1、caffe下的均值 数据格式是二进制的binaryproto,作者提供了计算均值的文件compute_image_mean, 计算均值时调用: sudo build/tools/compute_image_mean examples/mnist/mnist_train_lmdb examp…