卷积神经网络
-
【455】Python 徒手实现 卷积神经网络 CNN
参考:CNNs, Part 1: An Introduction to Convolutional Neural Networks 参考:CNNs, Part 2: Training a Convolutional Neural Network 目录 动机(Motivation) 数据集(Dataset) 卷积(Convolutions) 池化(Poolin…
-
使用卷积神经网络CNN训练识别mnist
算的的上是自己搭建的第一个卷积神经网络。网络结构比较简单。 输入为单通道的mnist数据集。它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片 第…
-
跟我学算法- tensorflow 卷积神经网络训练验证码
使用captcha.image.Image 生成随机验证码,随机生成的验证码为0到9的数字,验证码有4位数字组成,这是一个自己生成验证码,自己不断训练的模型 使用三层卷积层,三层池化层,二层全连接层来进行组合 第一步:定义生成随机验证码图片 number = [‘0′,’1′,’2′,’3′,’4′,’5′,’6′,’7′,’8′,’9’] # alphab…
-
深度学习原理与框架-卷积神经网络-cifar10分类(图片分类代码) 1.数据读入 2.模型构建 3.模型参数训练
卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码说明: 代码主要有三部分组成 第一部分: 数据读入 第二部分:模型的构建,用于生成loss和梯度值 第三部分:将数据和模型输入,使用batch_size数据进…
-
深度学习原理与框架-卷积网络细节-数据增强策略 1.翻转 2.随机裁剪 3.平移 4.旋转角度
数据增强表示的是,在原始图像的基础上,对数据进行一定的改变,增加了数据样本的数量,但是数据的标签值并不发生改变, 图片中可以看出对猫这张图片进行了灰度值的变化,但是猫的标签并没有发生改变 常见的数据增强的策略: 1. Horizontal flips 翻转, 左右翻转,将左边的像素点放在右边,将右边的像素点放在左边 2.Random crops/scales…
-
深度学习原理与框架-卷积网络细节-网络设计技巧 1. 3个3*3替换7*7卷积核 2. 1*1 和 3*3 替换 3*3卷积核
感受野:对于第一次卷积,如果卷积核是3*3,那么卷积的感受野就是3*3,如果在此卷积上,再进行一次卷积的话,那么这次的卷积的感受野就是5*5 因为5*5的区域,卷积核为3*3, 卷积后每一个点的感受野是3*3,卷积后的区域为3*3 第二次卷积还用用3*3的卷积的话,第二次卷积的结果就变成了1*1,因此每一个点的感受野是5*5 对应于3次卷积的结果,每一…
-
82、TensorFlow教你如何构造卷积层
”’ Created on 2017年4月22日 @author: weizhen ”’ import tensorflow as tf #通过tf.get_variable的方式创建过滤器的权重变量和偏置变量,上面介绍了卷积层 #的参数个数只和过滤器的尺寸、深度以及当前层节点矩阵的深度有关,所以这里声明的参数变量 #是一个四维矩阵,前面两个维度代表了过…
-
81、Tensorflow实现LeNet-5模型,多层卷积层,识别mnist数据集
”’ Created on 2017年4月22日 @author: weizhen ”’ import os import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.p…
-
CNN中,1X1卷积核到底有什么作用呢?
CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这个,为什么呢? 发现很多网络使用了1X1卷积核,这能起到什么作用呢?另外我一直觉得,1X1卷积核就是对输入的一个比例缩放,因为1X1卷积核只有一…
-
深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool_h1表示输入数据,4表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 …