卷积神经网络

  • 卷积操作的维度

    常见的库如opencv, theano等的卷积操作方法(cv2.filter2D, theano.tensor.nnet.conv2d)都有带有\(2d\), 这个2d代表什么呢? # 卷积操作的维度进行conv操作时, 它的前进方向的维度就是conv操作的维度. 例如最常见的图片conv操作只沿长与宽两个方向进行, 所以是$2D$的conv. 若conv操…

    卷积神经网络 2023年4月8日
    00
  • 卷积操作的线性性质

    (离散)卷积操作其实是仿射变换的一种: 对输入向量进行线性变换, 再加一个bias. 是一种线性变换. 它本身也满足线性函数的定义. 它可以被写成矩阵乘法形式. 以下图的卷积操作为例:若将\(3\times 3\)的卷积核与\(4\times 4\)的输入都按行优先展开为一维列向量. 则定义在它们之上的卷积操作可以写为矩阵\(C\)与向量\(x\)的乘法. …

    2023年4月8日
    00
  • 相关算子和卷积

    1.相关算子(Correlation Operator) 定义:, 即 ,其中h称为相关核(Kernel). 步骤: 1)滑动核,使其中心位于输入图像g的(i,j)像素上 2)利用上式求和,得到输出图像的(i,j)像素值 3)充分上面操纵,直到求出输出图像的所有像素值     例: A = [17 24 1 8 15 23 5 7 14 16 4 6 13 …

    2023年4月8日
    00
  • 空域图卷积模型

    回顾经典卷积的操作:采样(即构建邻域)+聚合(聚合邻居结点的信息)。将固定数量的邻域结点排序后,与相同数量的卷积核参数相乘求和。 对于图结构数据如何定义卷积操作?   1)构建邻域;   2)对邻域的点与卷积核参数内积; GNN,构建邻域的大小为p,p个固定数量的卷积核参数。GNN使用随机游走的方法,为每个结点选取了最紧密相连的p个结点作为邻域,然后与固定大…

    2023年4月8日
    00
  • 一些卷积概念和图解

    目录 RGB 3通道卷积 3D卷积 空洞卷积 推荐一个链接(用Excel实现多种维度的卷积):https://medium.com/apache-mxnet/multi-channel-convolutions-explained-with-ms-excel-9bbf8eb77108 其中3维卷积是这样的: 我以前的错误理解:如果输出通道只有1个,那么就只有…

    2023年4月8日
    00
  • 图卷积神经网络GCN系列二:节点分类(含示例及代码)

    图上的机器学习任务通常有三种类型:整图分类、节点分类和链接预测。本篇博客要实现的例子是节点分类,具体来说是用GCN对Cora数据集里的样本进行分类。 Cora数据集介绍: Cora数据集由许多机器学习领域的paper构成,这些paper被分为7个类别: Case_Based Genetic_Algorithms Neural_Networks Probabi…

    2023年4月8日
    00
  • 【TensorFlow实战】TensorFlow实现经典卷积神经网络之VGGNet

      VGGNet是牛津大学计算机视觉组与Google DeepMind公司的研究员一起研发的深度卷积神经网络。VGGNet探索了卷积神经网络的深度与其性能之间的关系,通过反复堆叠3*3的小型卷积核核2*2的最大池化层,VGGNet成功地构建了16~19层的卷积神经网络。VGGNet相比于之前state-of-the-art网络结构,错误率大幅下降,并取得了I…

    2023年4月8日
    00
  • 【TensorFlow实战】TensorFlow实现经典卷积神经网络之ResNet

       ResNet(Residual Neural Network)通过使用Residual Unit成功训练152层深的神经网络,在ILSVRC 2015比赛中获得冠军,取得3.57%的top-5错误率,同时参数量却比VGGNet低,效果突出。ResNet的结构可以极快地加速超深神经网络的训练,模型的准确率也有非常大的提升。ResNet是一个推广性非常好的…

    2023年4月8日
    00
  • 卷积神经网络(CNN)模型结构 卷积神经网络(CNN)模型结构

     转载:http://www.cnblogs.com/pinard/p/6483207.html              看到的一片不错的文章,先转过来留着,怕以后博主删了。哈哈哈     在前面我们讲述了DNN的模型与前向反向传播算法。而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的…

    卷积神经网络 2023年4月8日
    00
  • 理解数字图像处理中的卷积 理解数字图像处理中的卷积

    彻底理解数字图像处理中的卷积-以Sobel算子为例 作者:FreeBlues 修订记录 2016.08.04 初稿完成 概述 卷积在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨论卷积在数字图像处理中的应用. 在数字图像处理中, 有一种基本的处理方法:线性滤波. 待处理的平面数字图像可被看做一个大矩阵, 图像的每个像素对应着矩阵的每个元…

    卷积神经网络 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部