剑断青丝ii

  • knn算法详解

    1.什么是knn算法 俗话说:物以类聚,人以群分。看一个人什么样,看他身边的朋友什么样就知道了(这里并没歧视谁,只是大概率是这样) 对于判断下图绿色的球是哪种数据类型的方法就是根据寻找他最近的k个数据,根据k的值来推测新数据的类型。 比如下图离绿球最近的红三角有两个,蓝方块有一个,因此推测绿色的球为红色的三角,这就是knn算法的思想 2.算法原理 2.1通用…

    2023年4月2日
    00
  • Python爬虫详解

    1、任务介绍 需求分析爬取豆瓣电影Top250的基本信息,包括电影的名称,豆瓣评分,评价数,电影概况,电影链接等。 https://movie.douban.com/top250 2、基本流程 2.1、准备工作 通过浏览器查看分析目标网页,学习编程基础规范与Java的一些区别,Python没有主函数,需要自己去定义并判断 def main():#所有程序从这…

    2023年4月2日
    00
  • 机器学习实战-决策树

    1.决策树的构造 1.1优缺点 优点: 计算复杂度不高:以ID3为例,每次运算都是基于某一列特征,特征计算完后,下次计算不考虑该最有特征,并且通过适当剪枝可以简化复杂度 输出结果易于理解:因为输出的是一个树的结构,树的走向一目了然 对中间值的缺失不敏感 可以处理不相关特 征数据:是基于每列特征来计算,不考虑特征之间的依赖关系 缺点:可能会产生过度匹配问题。适…

    2023年4月2日
    00
  • 机器学习实战-朴素贝叶斯

    1.优缺点 优点: 在数据较少的情况下仍然有效, 可以处理多类别问题。 缺点: 对于输入数据的准备方式较为敏感。 适用数据类型:标称型数据 2.朴素贝叶斯的一般过程 (1) 收集数据:可以使用任何方法。本章使用RSS源。(2) 准备数据:需要数值型或者布尔型数据。(3) 分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好。(4) 训练算法:计算…

    2023年4月2日
    00
  • 机器学习实战-Logistic回归

    1.基于 Logistic 回归和 Sigmoid 函数的分类 逻辑回归适合于01情况的分类就是描述一个问题是或者不是,所以就引入sigmoid函数,因为这个函数可以将所有值变成0-1之间的一个值,这样就方便算概率首先我们可以先看看Sigmoid函数(又叫Logistic函数)将任意的输入映射到了[0,1]区间我们在线性回归中可以得到一个预测值,再将该值映射…

    2023年4月2日
    00
  • 机器学习实战-支持向量机

    1.支持向量机简介 英文名为Support Vector Machine简称为SVM,是一种二分类模型 线性可分支持向量机:如下图就可以通过一条红色的直线将蓝色的球和红色的球完全区分开,该直线被称为线性分类器,如果是高维的,就可以通过一个超平面将三维立体空间里的样本点给分开。通过硬间隔最大化,学习一个线性分类器。 线性支持向量机:如下图有一个红色的点无论怎么…

    2023年4月2日
    00
  • 机器学习实战-AdaBoost

    1.概念 从若学习算法出发,反复学恶习得到一系列弱分类器(又称基本分类器),然后组合这些弱分类器构成一个强分类器。简单说就是假如有一堆数据data,不管是采用逻辑回归还是SVM算法对当前数据集通过分类器data进行分类,假如一些数据经过第一个分类器之后发现是对的,而另一堆数据经过第一个分类器之后发现数据分类错了,在进行下一轮之前就可以对这些数据进行修改权值的…

    2023年4月2日
    00
  • 使用gensim框架和随机文本训练Word2Vector模型

    1.gensim的安装 可以使用如下命令安装gensim conda install -i https://pypi.tuna.tsinghua.edu.cn/simple gensim==3.8.2 2.生成分词列表 这一步已经有生成好的分词列表可以忽略项目列表: 点击查看代码 # coding:utf-8 from gensim.models impor…

    2023年3月31日
    00
  • 使用cnn,bpnn,lstm实现mnist数据集的分类

    1.cnn import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # 设置随机数种子 torch.manual_seed(0) # 超…

    Python开发 2023年3月31日
    00
合作推广
合作推广
分享本页
返回顶部