卷积神经网络

  • 对于卷积神经网络CNN中卷积层Conv2D结构与计算的详细理解,图片整理自多个参考书籍

    本文只讨论CNN中的卷积层的结构与计算,不讨论步长、零填充等概念,代码使用keras。 一些名词: 卷积核,别名“过滤器”、“特征提取器”。 特征映射,别名“特征图”。 至于神经元和卷积核在CNN中的区别,可以看参考7(结合参考6)中Lukas Zbinden 写的答案:···“The neuron here represents the dot produ…

    2023年4月8日
    00
  • 卷积与反卷积以及步长stride

    1. 卷积与反卷积 如上图演示了卷积核反卷积的过程,定义输入矩阵为 2): 卷积的过程为:O 反卷积的过称为:O 的边缘进行延拓 padding) 2. 步长与重叠 卷积核移动的步长(stride)小于卷积核的边长(一般为正方行)时,变会出现卷积核与原始输入矩阵作用范围在区域上的重叠(overlap),卷积核移动的步长(stride)与卷积核的边长相一致时,…

    卷积神经网络 2023年4月8日
    00
  • 关于1*1卷积核的理解

    发现很多网络使用1×1的卷积核,实际就是对输入的一个比例缩放,因为1×1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数。(对于单通道和单个卷积核而言这样理解是可以的) 对于多通道和多个卷积核的理解,1×1卷积核大概有两方面的作用:1.实现跨通道的交互和信息整合(具有线性修正特性,实现多个feature map的线性组合,可以实现fea…

    卷积神经网络 2023年4月8日
    00
  • TensorFlow conv2d实现卷积

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方…

    卷积神经网络 2023年4月8日
    00
  • 用numpy实现CNN卷积神经网络

    为了加深对卷积神经网络底层原理的理解,本文通过使用numpy来搭建一个基础的包含卷积层、池化层、全连接层和Softmax层的卷积神经网络,并选择relu作为我们的激活函数,选择多分类交叉熵损失函数,最后使用了mnist数据集进行了训练和测试。 关于卷积网络的详细原理和实现可参考下列文章: 刘建平Pinard:卷积网络前向反向传播算法 卷积层的反向传播 手把手…

    卷积神经网络 2023年4月8日
    00
  • deeplearning—-卷积神经网络

    稀疏连接性 CNN通过增强相邻两层中神经元的局部的连接来发掘局部空间相关性. m层的隐输入单元和m-1层的一部分空间相邻,并具有连续可视野的神经元相连接. 它们的关系如下图所示:   我们可以假设m-1层为输入视网膜, 在它之上,m层的视觉神经元具有宽度为3的可视野,因此一个单元可以连接视网膜层的三个相邻的神经元. m层的神经元和m-1层具有类似的连接属性.…

    2023年4月8日
    00
  • [转]tensorflow 中的卷积conv2d的padding 到底要padding多少

    转自博文: https://www.jianshu.com/p/05c4f1621c7e   之前一直对tensorflow的padding一知半解,直到查阅了tensorflow/core/kernels/ops_util.cc中的Get2dOutputSizeVerbose函数,才恍然大悟,下面是具体的介绍 实际上tensorflow官方API里有介绍!…

    卷积神经网络 2023年4月8日
    00
  • 如何设计卷积神经网络架构和卷积、池化后图片大小的计算

     (1)如何设计卷积神经网络架构    下面的正则化公式总结了一些经典的用于图片分类问题的卷积神经网络架构:                         输入层→(卷积层+→池化层?)+→全连接层+       “+”表示一层或多层,“?”表示有或者没有      除了LeNet-5模型,2012年ImageNet ILSVRC图像分类挑战的第一名Ale…

    卷积神经网络 2023年4月8日
    00
  • 【深度学习】经典的卷积神经网络(LeNet、AlexNet、VGG)

    LeNet-5             LeNet-5网络结构来源于Yan LeCun提出的,原文为《Gradient-based learning applied to document recognition》,论文里使用的是mnist手写数字作为输入数据(32 * 32)进行验证。我们来看一下网络结构。         LeNet-5一共有8层: 1个…

    2023年4月8日
    00
  • 【深度学习】经典的卷积神经网络(GoogLeNet)

    回顾       简单的浅层神经网络,如三层的卷积神经网络等,在层数比较少的时候,有时候效果往往并没有那么好,在实验过程中发现,当尝试增加网络的层数,或者增加每一层网络的神经元个数的时候,对准确率有一定的提升,简单的说就是增加网络的深度与宽度,但这样做有两个明显的缺点: 更深更宽的网络意味着更多的参数,提高了模型的复杂度,从而大大增加过拟合的风险,尤其在训练…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部