卷积神经网络

  • 卷积神经网络对图片分类-下

    接上篇:卷积神经网络对图片分类-中   9 ReLU(Rectified Linear Units) Layers 在每个卷积层之后,会马上进入一个激励层,调用一种激励函数来加入非线性因素,决绝线性不可分的问题。这里我们选择的激励函数方式叫做ReLU, 他的方程是这样f(x) = max(0, x),就是把小于零的值都归为0,好处是可以是网络训练的更快,减少…

    2023年4月8日
    00
  • 卷积神经网络物体检测之感受野大小计算

      学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。   在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区…

    2023年4月8日
    00
  • <转>卷积神经网络是如何学习到平移不变的特征

    After some thought, I do not believe that pooling operations are responsible for the translation invariant property in CNNs. I believe that invariance (at least to translation) is …

    2023年4月8日
    00
  • 深入理解卷积层

    https://blog.csdn.net/m0_37407756/article/details/80904580 有部分内容是转载的知乎的,如有侵权,请告知,删除便是,但由于是总结的,所以不一一列出原作者是who。 再次感谢,也希望给其他小白受益。 首先说明:可以不用全连接层的。 理解1: 卷积取的是局部特征,全连接就是把以前的局部特征重新通过权值矩阵组…

    卷积神经网络 2023年4月8日
    00
  • Paper:基于图卷积神经网络(Graph Convolutional Networks GCN)的半监督分类

    本文为“SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS”, 作者ThomasN.Kipf。 本文是基于谱的图卷积网络用来解决半监督学习的分类问题,输入为图的邻接矩阵A,和每一个节点的特征向量H 本问对应的代码为 https://github.com/tkipf/gcn. 半监督…

    2023年4月8日
    00
  • CNN的卷积核是单层的还是多层的?

    解析: 一般而言,深度卷积网络是一层又一层的。 层的本质是特征图, 存贮输入数据或其中间表示值。一组卷积核则是联系前后两层的网络参数表达体, 训练的目标就是每个卷积核的权重参数组。描述网络模型中某层的厚度,通常用名词通道channel数或者特征图feature map数。 不过人们更习惯把作为数据输入的前层的厚度称之为通道数(比如RGB三色图层称为输入通道数…

    卷积神经网络 2023年4月8日
    00
  • 猪猪的机器学习(十九)卷积神经网络

    卷积神经网络 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十九次课在线笔记。卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。   引言: 第十九和二十课进入了目前比较新又非常热门的深度学习中。…

    2023年4月8日
    00
  • 卷积到底有什么作用?如何做到特征提取?

    [学习笔记] 经过前面的神经网络的基础学习,终于进入我们这章的核心部分,卷积神经网络(CNN, Convolutional Neural Networks)。很多同学学了半天卷积神经网络,但一直有一个最最根本的问题没有搞懂,他也知道怎么做卷积了,也知道怎么做池化了,就是不知道在为什 么这么干?马克-to-win @ 马克java社区:一直云里雾里的。一般的视…

    卷积神经网络 2023年4月8日
    00
  • 循环卷积与任意长度FFT

    在之前的DFT中有n^2的循环卷积 考虑式子为 的暴力卷积 拆分nk为 对于Xk,k^2/2是常值 于是 可以发现后半部分是关于n和(k-n)的卷积。 可以得到点值。 逆运算可以推出相对的式子即可。

    2023年4月8日
    00
  • 卷积神经网络参数计算及卷积层输出尺寸计算

    一、卷积神经网络参数计算 CNN一个牛逼的地方就在于通过感受野和权值共享减少了神经网络需要训练的参数的个数,所谓权值共享就是同一个Feature Map中神经元权值共享,该Feature Map中的所有神经元使用同一个权值。因此参数个数与神经元的个数无关,只与卷积核的大小及Feature Map的个数相关。但是共有多少个连接个数就与神经元的个数相关了,神经元…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部