卷积神经网络
-
Deep Learning 学习随记(七)Convolution and Pooling –卷积和池化
图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的。两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接相连)。但是大图像,这个将会变得很耗时:比如96*96的图像,若采用全连接方式,需要96*96个输入单元,然后如果要训练100个特征,只这一层就需要96*96*…
-
【TensorFlow实战】TensorFlow实现经典卷积神经网络之AlexNet
卷积神经网络已经基本解决了ImageNet数据集的图片分类问题。ImageNet项目的灵感最早来自儿童认识世界时眼睛相当于每200ms就拍照一次。 AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中,其主要应用到的新技术点在于: 1.成功使用ReLU作为CNN的激活函数,验证了其效果在较深的网络中超过Sigmoi…
-
常见的深度卷积网络结构整理
FPN bottom up + top down. 参考:https://github.com/luliyucoordinate/FPN_pytorch/blob/master/fpn.py import torch.nn as nn import torch.nn.functional as F import math __all__=[‘FPN’] cl…
-
Latex向上\向下取整语法 及卷积特征图高宽计算公式编辑
在编辑卷积网络输出特征高宽公式时,需用到向下取整,Mark一下。 向下取整 \(\lfloor x \rfloor\)$\lfloor x \rfloor$ 向上取整 \(\lceil x \rceil\)$\lceil x \rceil$ 特征图高宽公式 \(已知输入的高宽为(h_x,w_x)、卷积核的高宽为(h_k,w_k)、高度和宽度方向的步幅为(s_…
-
卷积神经网络在tenserflow的实现
卷积神经网络的理论基础看这篇:http://blog.csdn.net/stdcoutzyx/article/details/41596663/ 卷积神经网络的tenserflow教程看这里:http://www.tensorfly.cn/tfdoc/tutorials/deep_cnn.html 卷积神经网络(convolutional neural ne…
-
反卷积(Transposed Convolution)
反卷积的具体计算步骤 令图像为 卷积核为 case 1 如果要使输出的尺寸是 5×5,步数 stride=2 ,tensorflow 中的命令为: transpose_conv = tf.nn.conv2d_transpose(value=input, filter=kernel, output_shape=[1,5,5,1], stride…
-
特别长序列的快速卷积
一、功能 用重叠保留法和快速傅里叶变换计算一个特别长序列和一个短序列的快速卷积。它通常用于数字滤波。 二、方法简介 设序列\(x(n)\)的长度为\(L\),序列\(h(n)\)的长度为\(M\),序列\(x(n)\)与\(h(n)\)的线性卷积定义为 \[y(n)=\sum_{i=0}^{M-1}x(i)h(n-i) \] 用重叠保留法和快速傅里叶变换计算…
-
Convolution Layer:卷积层
1. 卷积层(Convolution Layer):由若干个卷积核f(filter)和偏移值b组成,(这里的卷积核相当于权值矩阵),卷积核与输入图片进行点积和累加可以得到一张feature map。 卷积层的特征: (1)网络局部连接:卷积核每一次仅作用于图片的局部 (2)卷积核权值共享:一个卷积层可以有多个不同的卷积核,每一个filter在与输入矩阵进行点…
-
基于tensorflow的CNN卷积神经网络对Fasion-MNIST数据集的分类器(1)
写一个基于tensorflow的cnn,分类fasion-MNIST数据集 这个就是fasion-mnist数据集 这张图片是CNN的一般结构 先上代码,在分析: import tensorflow as tf import pandas as pd import numpy as np config = tf.ConfigProto() confi…
-
典型卷积神经网络架构 典型卷积神经网络架构
参考资料 0 Figures First 1 LeNet5 贡献 2 Dan Ciresan Net 3 AlexNet 贡献 4 VGG19 贡献 5 Network-in-network(NiN) 6 Inception V1-V3 贡献 参考资料 Neural Network Architectures CS231N Spring 2017 Lec…