卷积神经网络
-
学习笔记TF013:卷积、跨度、边界填充、卷积核
卷积运算,两个输入张量(输入数据和卷积核)进行卷积,输出代表来自每个输入的信息张量。tf.nn.conv2d完成卷积运算。卷积核(kernel),权值、滤波器、卷积矩阵或模版,filter。权值训练习得。卷积核(filter参数)权值数量决定需要学习卷积核数量。通道,计算机器视觉,描述输出向量。RGB图像,3个代表秩1张量[red,green,blue]通道…
-
【OpenCV学习】图像卷积滤波
作者:gnuhpc 出处:http://www.cnblogs.com/gnuhpc/ #include “cv.h” #include “highgui.h” #include <stdio.h> int main(int argc,char **argv) { IplImage *src=/blog.armyourlife.info/0,*d…
-
卷积神经网络(3)—-经典网络 – 吱吱了了
卷积神经网络(3)—-经典网络 卷积层要提升表达能力,主要依靠增加输出通道数,副作用是计算量增大和过拟合。 一、历史过程: 二、经典网络 1、LeNet:两层卷积+池化,两层全连接 2、AlexNet:5个卷积层、5个池化层、3个全连接层【大约5000万个参数】,最后一个全连接层输出到一个1000维的softmax层,产生一个1000类的分类。 优点…
-
使用opencv实现自定义卷积
对图像进行卷积是图像处理的基本操作,最近在研究图像滤波,经常要用到自定义卷积,所以实现了一下 1 #include “opencv2/imgproc/imgproc.hpp” 2 #include “opencv2/highgui/highgui.hpp” 3 4 using namespace cv; 5 6 Mat get_blur_kernel(int…
-
【python实现卷积神经网络】激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus)
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数并没有多少要说的,根据公式定义好就行了,需要注意的是梯度公…
-
【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积
介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional networks for semantic segmentation[C]. Computer Vision and Pattern Recognition, 2015. 2…
-
【转】卷积神经网络
http://blog.csdn.net/celerychen2009/article/details/8973218 深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功。本人在多年之前也曾接触过神经网络。本系列文章主要记录自己对深度神经网络的一些学习心得。 第二篇,讲讲经典的卷积神经网络。我不打算详细描述卷积神经网络的生物学运行机理,因为网络…
-
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 – legendsun
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自 己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样。所以想习…
-
CNN卷积神经网络在自然语言处理的应用
摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献。本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用。 当我们听到卷积神经网络(Convolutional Neural Network, CNNs)时,往往会联想到计算机视觉。CNNs在图像分类领域做出了巨大贡献,也是当今绝大多数计算机视觉系统的核心…
-
滤波、形态学腐蚀与卷积(合集)
https://blog.csdn.net/qq_36285879/article/details/82810705 S1.1 滤波、形态学腐蚀与卷积(合集) 参考:《学习OpenCV3》、《数字图像处理编程入门》文章目录 S1.1 滤波、形态学腐蚀与卷积(合集)滤波器简单模糊与方形滤波中值滤波高斯滤波双边滤波导数和梯度Sobel算子Scharr滤波器拉普拉…