边界填充(padding):卷积过程中,越靠近图片中间位置的像素点越容易被卷积计算多次,越靠近边缘的像素点被卷积计算的次数越少,填充就是为了使原来边缘像素点的位置变得相对靠近中部,而我们又不想让填充的数据影响到我们的计算结果,故填充值选择均用0来填充。
池化层不需要参数、只是对特征图进行压缩操作,以减少计算量:池化几乎不用平均池化,多用最大池化操作,对于最大池化,多选择特征图种每个小区域最大的那个值保留下来,因值最大,对应的信息也越重要,故最应将其保留。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Deep Learning系统实训之三:卷积神经网络 - Python技术站