- import tensorflow as tf
- with tf.name_scope("hello") as name_scope:
- arr1 = tf.get_variable("arr1", shape=[2,10],dtype=tf.float32)
- print (name_scope)
- print (arr1.name)
- print ("scope_name:%s " % tf.get_variable_scope().original_name_scope)
运行后的结果如下:
hello/
arr1:0
scope_name:
- import tensorflow as tf
- with tf.name_scope('hidden') as scope:
- a = tf.constant(5, name='alpha')
- W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0), name='weights')
- b = tf.Variable(tf.zeros([1]), name='biases')
- print (a.name)
- print (W.name)
- print (b.name)
运行的结果:
hidden/alpha:0
hidden/weights:0
hidden/biases:0
红色字体要强调的部分所以把字体改成了红色,理解name_scope 对 tf.get_variable()的作用和 tf.Variable()的不同
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow 中 name_scope和variable_scope - Python技术站