详解动态规划算法原理与使用方法

动态规划算法

什么是动态规划算法?

动态规划是一种算法思想,可以用来解决多阶段决策问题,通常具有以下两个特点:

  1. 最优化原理:如果问题的最优解包含子问题的最优解,那么可通过自底向上的方式动态地解决问题。
  2. 无后效性:子问题的解一旦确定了,就不会受到在这之后、包含它的更大的问题的求解策略的影响。

动态规划算法使用方法

  1. 确定状态:动态规划所涉及到的状态一般具有两个意义:状态集合状态转移方程 中的状态。通常情况下,状态集合比较好确定,而状态转移方程中即表示状态的具体含义。
  2. 确定状态转移方程:由状态转移方程可以得到从一个状态到另一个状态的转移方式,这是最难的部分,也是最为核心的部分。
  3. 确定初始状态:初始状态一般是最简单最极限的状态,且通常为 0 或 1。

动态规划算法的作用

动态规划可以用来解决一些经典问题,如:

  1. 寻找两个字符串的相似度
  2. 背包问题
  3. 最长公共子序列问题
  4. 图最短路径问题
  5. 连通性问题

示例说明

示例1:斐波那契数列问题

斐波那契数列问题的状态转移方程为:

f(n) = f(n-1) + f(n-2)

初始状态为 f(0) = 0, f(1) = 1

代码示例:

def fibonacci(num: int) -> int:
    if num == 0:
        return 0
    if num == 1:
        return 1
    f1, f2 = 0, 1
    for i in range(2, num+1):
        f_i = f1 + f2
        f1 = f2
        f2 = f_i
    return f_i

示例2:背包问题

背包问题的状态转移方程为:

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])

其中 dp[i][j] 表示前 i 个物品放入容量为 j 的背包能得到的最大价值。初始状态为 dp[0][j] = 0dp[i][0] = 0

代码示例:

def knapsack(w: List[int], v: List[int], c: int) -> int:
    n = len(w)
    dp = [0] * (c+1)
    for i in range(1, n+1):
        for j in range(c, w[i-1]-1, -1):
            dp[j] = max(dp[j], dp[j-w[i-1]]+v[i-1])
    return dp[c]

以上两个示例都是典型的动态规划问题,可以看到动态规划算法具有很好的通用性,可以用于解决多种问题。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解动态规划算法原理与使用方法 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • python实现神经网络感知器算法

    下面是关于“Python实现神经网络感知器算法”的完整攻略。 1. 神经网络感知器算法简介 神经网络感知器算法是一种二分类模型,它是一种最简单的神经网络模型。感知器算法的基本思想是将输入向量乘以权重向量,然后将结果传递给激活函数,最后输出二分类结果。感知器算法的训练过程是通过不断调整权重向量来使模型的输出结果更加准确。 2. Python实现神经网络感知器算…

    python 2023年5月13日
    00
  • python编程通过蒙特卡洛法计算定积分详解

    以下是关于“Python编程通过蒙特卡洛法计算定积分详解”的完整攻略: 简介 蒙特卡洛法是一种常见的数值计算方法,可以用于计算定积分。本教程将介绍如何使用Python编程通过蒙特卡洛法计算定积分,并讨论如何使用该方法进行数值积分。 步骤 1.导入库和定义函数 首先,我们需要导入必要的库,包括numpy和matplotlib。在Python中,可以使用以下代码…

    python 2023年5月14日
    00
  • Python基于回溯法子集树模板解决数字组合问题实例

    以下是关于“Python基于回溯法子集树模板解决数字组合问题实例”的完整攻略: 简介 回溯法是一种常用的解决组合问题的算法,它通过枚举所有可能的解决方案,找到符合条件的解决方案。在本教程中,我们将介绍如何使用Python实现回溯法,解决数字组合问题。 数字组合问题 数字组合问题是一种常见的组合问题,它的目标是从给定的数字集合中,找到所有可能的组合,使得它们的…

    python 2023年5月14日
    00
  • Python猜数字算法题详解

    下面是详细讲解“Python猜数字算法题详解”的完整攻略,包括算法原理、Python实现和两个示例说明。 算法原理 猜数字算法题是一种经典的算法题,其基本思想是通过二分查找的方式,逐步缩小猜测范围,最终猜中目标数字。具体实现过程如下: 首先确定猜测范围,通常为1到100之间的整数。 然后猜测中间的数字,即猜测范围的中间值。 根据猜测结果,如果猜中了目标数字,…

    python 2023年5月14日
    00
  • Python实现KNN邻近算法

    Python实现KNN邻近算法的完整攻略 KNN算法是一种常用的机器学习算法,用于分类和回归问题。本文将详细讲解Python实现KNN算法的整个攻略,包括算法原理实现过和示例。 算法原理 KNN算法的基本思想是通过计算待分类样本与训练集中所有样本距离选取距近的k样本,根据这k个样本的类别进行投票,将待分类样归票数多的类别。在回归中,KNN算法的基本思想是通过…

    python 2023年5月14日
    00
  • python实现三壶谜题的示例详解

    Python实现三壶谜题的示例详解 三壶谜题是一种经典的逻辑谜题,它涉及到三个水壶和一些水的问题。在这个问题中,我们需要找到一种方法,使得其中一个水壶恰好装有一定的水。在Python中,我们可以使用深度优先搜索算法来解决这个问题。本文将详细讲解Python中三壶谜题实现过程,包括状态表示、搜索算法和结果输出等。 状态表示 在解决三壶谜题之前,我们需要定义状态…

    python 2023年5月14日
    00
  • 详解桶排序算法原理与使用方法

    桶排序(Bucket Sort)是一种排序算法,它在待排序元素分布比较均匀的情况下能够比较快速地进行排序。桶排序的基本思路是将待排序的元素分别放到不同的桶中,再对所有的桶进行排序,最后依次将桶中的元素取出。 桶排序的主要作用是对大量数据进行排序,可以用于处理大数据量的文件排序和高考成绩排名等应用场景。 桶排序的具体实现方法如下: 确定桶的个数:对于待排序元素…

    算法 2023年3月27日
    00
  • 用Python解决计数原理问题的方法

    下面是详细讲解“用Python解决计数原理问题的方法”的完整攻略。 计数原理 计数理是组合数学中的一个基本原理,用于计算某些事件的总数。该原理包括加法原理和乘法理两个部分。 加法原理:如果一个事件可以分解为m个互不相交的子事件,且这些子事件的并集等该事件,那么该事件的总数等于这m个子事件的个数之和。 乘法原理:如果一个事件可以分解为m个立的子事件,且这些子事…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部