Opencv 傅立叶变换带通滤波

Opencv 傅立叶变换带通滤波的完整攻略

Opencv 傅立叶变换带通滤波是一种常见的图像处理技术,可以用于图像的频域分析、滤波等操作。本文将详细讲解Opencv 傅立叶变换带通滤波的完整攻略,包括基本原理、方法和两个示例说明。

Opencv 傅立叶变换带通滤波的基本原理

Opencv 傅立叶变换带通滤波是一种基于傅立叶变换的图像处理技术,可以通过对图像进行频域分析,实现图像的带通滤波。带通滤波的基本原理是通过滤波器对图像进行频域滤波,去除低频和高频分量,保留中间频率分量,从而实现图像的波。具体实现方法包括:

  • cv2.dft函数:用于对图像进行傅立叶变换。
  • cv2.idft函数:用于对图像进行傅立叶反变换。
  • np.fft.fftshift函数:用将频域图像的直流分量移动到频谱中心。
  • np.fft.ifftshift函数:用于将频域图像的直流分量移动回原来的位置。

Opencv 傅立叶变换带通滤波使用方法

Opencv库提供cv2.dft和cv2.idft函数,可以用于对图像进行傅叶变换和傅立叶反变换。函数的基本语法如下:

dft = cv2.dft(src, flags[, nonzeroRows])
dst = cv2.idft(src[, flags[, nonzeroRows]])

其中,src表示输入图像,flags表示傅立叶变换的标志,nonzeroRows表示非零行数,dst表示输出图像。

示例说明

下面是两个Opencv 傅立叶变换带通滤波的示例说明:

示例1:使用带通滤波器对图像进行滤波

import cv2
import as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg', 0)

# 傅立叶变换
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUTdft_shift = np.fft.fftshift(dft)

# 生成带通滤波器
rows, cols = img.shape
crow, ccol = rows//2, cols//2
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
mask[:-50, :] = 0
mask[crow+50:, :] = 0

# 应用带通滤波器
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ish)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

# 显示原始图像和带通滤波后的图像
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Band Pass Filtered Image'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和带通滤波后的图像。

示例2:使用带通滤波器对图像进行频域分析

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg', 0)

# 傅立叶变换
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

# 生成带通滤波器
rows, cols = img.shape
crow, ccol = rows//2, cols//2
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+] = 1
mask[:crow-50, :] = 0
mask[crow+50:, :] = 0

# 应用带通滤波器
fshift = dft_shift * mask
magnitude_spectrum = 20*np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1]))

# 显示原始像和频域图像
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和频域图像。

结论

Opencv 傅立叶变换带通滤波是一种基于傅立叶变换的图像处理技术,可以通过对图像进行频域分析,实现图像的带通滤波。通过Opencv库中的cv2.dft和cv2.idft函数,可以实现对图像的傅立叶变换和傅立叶反变换。通过本文介绍,您应该已经了解了Opencv 傅立叶变换带通滤波的基本原理、方法和两个示例说明,可以根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 傅立叶变换带通滤波 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 平均池化

    OpenCV平均池化 OpenCV平均池化是一种图像处理方法,可以用于图像降采样和模糊等应用。本文将介绍OpenCV平均池化的基本原理和使用方法,并提供两个示例说明。 OpenCV平均池化的基本原理 OpenCV平均池化是一种图像处理方法,可以用于图像降采样和模糊应用。平均池化的基本思想是将图像分成若干个区域,对每个区域内的像素值取平均,从而得到一个降采样后…

    python 2023年5月10日
    00
  • Python OpenCV – startWindowThread()

    以下是关于Python OpenCV-startWindowThread()的完整攻略。 Python OpenCV-startWindowThread()基本原理 startWindowThread()是OpenCV中的一个函数,用于启动窗口线程。在使用OpenCV进行图像处理,我们通常需要在窗口中显示图像。但是,如果我们在主线程中显示图像,会导致程序阻塞…

    python 2023年5月11日
    00
  • Opencv 傅立叶变换低通滤波

    Opencv 傅立叶变换低通滤波的完整攻略 Opencv 傅立叶变换低通滤波是一种常见的图像处理技术,可以用于图像的去噪、平滑等操作。本文将详细讲解Opencv 傅立叶变换低通滤波的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 傅立叶变换低通滤波的基本原理 Opencv 傅立叶变换低通滤波是一种基于傅立叶变换的图像处理技术,可以通过对图像进行频…

    python 2023年5月10日
    00
  • Opencv 简单图像识别第二步

    OpenCV 中的简单图像识别是一种图像处理技术,它可以通过对图像进行特征提取和匹配来实现对图像的识别。在 OpenCV 中,可以使用 SIFT、F、ORB 等算法来进行特征提取和匹配。 使用 SIFT 算法进行简单图像识别的基本步骤如下: 读取图像 转换颜色空间 计算 SIFT 特征 训练分类器 预测分类结果 以下是两个示例说明: 示例一:使用 SIFT …

    python 2023年5月11日
    00
  • Opencv 简单图像识别第三步

    以下是关于Opencv简单图像识别第三步的详细攻略。 Opencv简单图像识别第三步基本原理 Opencv简单图像识别第步是指通过Opencv库的机器学习算法对处理后的图像进行特征匹配,从而实现对目标图像的识别。常用的机器学习算法包括K、SVM、神经网络等。 Opencv简单图像识别第三步的步骤 读取训练数据 提训练数据的特征 训练机器学习模型 读取测试数据…

    python 2023年5月10日
    00
  • Opencv 均值滤波

    OpenCV均值滤波 OpenCV均值滤波是一种图像处理方法,可以用于图像平滑和降噪等应用。本文将介绍OpenCV均值滤波的基本原理和使用方法,并提供两个示例。 OpenCV均值滤波的基本原理 OpenCV均值滤波是一种线性平滑滤波器,可以用于图像平滑和降噪等应用。均值滤波的基本思想是对图像中的每个像素点取周围像素的平均值,从而得到一个平滑的图像。OpenC…

    python 2023年5月10日
    00
  • Opencv 可视化特征量

    以下是关于Opencv可视化特征量的详细攻略。 Opencv可视化特征量基本原理 Opencv可视特征量是一种常用的图像处理技术,用于对图像进行特征提取和特征匹配。具体实现方法包: 对图像进行特征提取 对特征进行匹配 可视化特征点和特征匹配 可视化特征量用于图像拼接、图像检索等应用。 Opencv可视化特征量的使用方法 Opencv提供 cv2.drawKe…

    python 2023年5月10日
    00
  • Python OpenCV – setWindowProperty

    OpenCV 中的 setWindowProperty 函数可以用于设置窗口的属性,例如窗口大小、窗口位置、窗口标题等。在 Python 中,可以使用 cv2.setWindowProperty 函数来实现 setWindowProperty。 setWindowProperty 的基本步骤如: 创建窗口 设置窗口属性 显示图像或视频以下是两个示例说明: 示…

    python 2023年5月11日
    00
合作推广
合作推广
分享本页
返回顶部