src/caffe/proto/caffe.proto 中LayerParameter部分
1 // NOTE 2 // Update the next available ID when you add a new LayerParameter field. 3 // 如果增加一个新的LayerParameter域,需要更新下一个可用的ID 4 // LayerParameter next available layer-specific ID: 147 (last added: recurrent_param) 5 message LayerParameter { 6 optional string name = 1; // the layer name 名称 7 optional string type = 2; // the layer type 类型 8 repeated string bottom = 3; // the name of each bottom blob 输入的Bottom Blob的名称 9 repeated string top = 4; // the name of each top blob 输出的Top Blob名称 10 11 // The train / test phase for computation.当前阶段TRAIN或TEST 12 optional Phase phase = 10; 13 14 // The amount of weight to assign each top blob in the objective. 15 // Each layer assigns a default value, usually of either 0 or 1, 16 // to each top blob. 17 // 为每个输出Top Blob分配对损失函数的权重,每个Layer都有默认值,0表示不参与计算,1表示参与损失函数计算 18 repeated float loss_weight = 5; 19 20 // Specifies training parameters (multipliers on global learning constants, 21 // and the name and other settings used for weight sharing). 22 // 指定训练参数(例如相对全局学习常熟的缩放因子,以及用于权值共享的名称或其他设置) 23 repeated ParamSpec param = 6; 24 25 // The blobs containing the numeric parameters of the layer. 26 // 承载该曾数值参数的Blob 27 repeated BlobProto blobs = 7; 28 29 // Specifies whether to backpropagate to each bottom. If unspecified, 30 // Caffe will automatically infer whether each input needs backpropagation 31 // to compute parameter gradients. If set to true for some inputs, 32 // backpropagation to those inputs is forced; if set false for some inputs, 33 // backpropagation to those inputs is skipped. 34 // 是否对Bottom Blob进行反向传播过程。该字段维度应与Bottom Blob个数一致。 35 // The size must be either 0 or equal to the number of bottoms. 36 repeated bool propagate_down = 11; 37 38 // Rules controlling whether and when a layer is included in the network, 39 // based on the current NetState. You may specify a non-zero number of rules 40 // to include OR exclude, but not both. If no include or exclude rules are 41 // specified, the layer is always included. If the current NetState meets 42 // ANY (i.e., one or more) of the specified rules, the layer is 43 // included/excluded. 44 // 控制某个层在某个时刻是否包含在网络中(基于当前的NetState) 45 // 可以为include或exclude指定非零值(不能同时) 46 // 如果没有规则,该层一直包含在网络中 47 // 如果当前的NetState满足一定条件,那么该层被包含或被排斥 48 repeated NetStateRule include = 8; 49 repeated NetStateRule exclude = 9; 50 51 // Parameters for data pre-processing. 数据预处理参数 52 optional TransformationParameter transform_param = 100; 53 54 // Parameters shared by loss layers. 所有损失层共享的参数 55 optional LossParameter loss_param = 101; 56 57 // Layer type-specific parameters.特定类型层参数 58 // 注意:一些层实现时可能有多于一种计算引擎,这些层通过选择引擎类型和引擎参数来实现。 59 // 默认引擎是在编译阶段由引擎开关设置的 60 // Note: certain layers may have more than one computational engine 61 // for their implementation. These layers include an Engine type and 62 // engine parameter for selecting the implementation. 63 // The default for the engine is set by the ENGINE switch at compile-time. 64 optional AccuracyParameter accuracy_param = 102; 65 optional ArgMaxParameter argmax_param = 103; 66 optional BatchNormParameter batch_norm_param = 139; 67 optional BiasParameter bias_param = 141; 68 optional ConcatParameter concat_param = 104; 69 optional ContrastiveLossParameter contrastive_loss_param = 105; 70 optional ConvolutionParameter convolution_param = 106; 71 optional CropParameter crop_param = 144; 72 optional DataParameter data_param = 107; 73 optional DropoutParameter dropout_param = 108; 74 optional DummyDataParameter dummy_data_param = 109; 75 optional EltwiseParameter eltwise_param = 110; 76 optional ELUParameter elu_param = 140; 77 optional EmbedParameter embed_param = 137; 78 optional ExpParameter exp_param = 111; 79 optional FlattenParameter flatten_param = 135; 80 optional HDF5DataParameter hdf5_data_param = 112; 81 optional HDF5OutputParameter hdf5_output_param = 113; 82 optional HingeLossParameter hinge_loss_param = 114; 83 optional ImageDataParameter image_data_param = 115; 84 optional InfogainLossParameter infogain_loss_param = 116; 85 optional InnerProductParameter inner_product_param = 117; 86 optional InputParameter input_param = 143; 87 optional LogParameter log_param = 134; 88 optional LRNParameter lrn_param = 118; 89 optional MemoryDataParameter memory_data_param = 119; 90 optional MVNParameter mvn_param = 120; 91 optional ParameterParameter parameter_param = 145; 92 optional PoolingParameter pooling_param = 121; 93 optional PowerParameter power_param = 122; 94 optional PReLUParameter prelu_param = 131; 95 optional PythonParameter python_param = 130; 96 optional RecurrentParameter recurrent_param = 146; 97 optional ReductionParameter reduction_param = 136; 98 optional ReLUParameter relu_param = 123; 99 optional ReshapeParameter reshape_param = 133; 100 optional ScaleParameter scale_param = 142; 101 optional SigmoidParameter sigmoid_param = 124; 102 optional SoftmaxParameter softmax_param = 125; 103 optional SPPParameter spp_param = 132; 104 optional SliceParameter slice_param = 126; 105 optional TanHParameter tanh_param = 127; 106 optional ThresholdParameter threshold_param = 128; 107 optional TileParameter tile_param = 138; 108 optional WindowDataParameter window_data_param = 129; 109 }
include/caffe/layer.hpp
1 #ifndef CAFFE_LAYER_H_ 2 #define CAFFE_LAYER_H_ 3 4 #include <algorithm> 5 #include <string> 6 #include <vector> 7 8 #include "caffe/blob.hpp" 9 #include "caffe/common.hpp" 10 #include "caffe/layer_factory.hpp" 11 #include "caffe/proto/caffe.pb.h" 12 #include "caffe/util/math_functions.hpp" 13 14 /** 15 Forward declare boost::thread instead of including boost/thread.hpp 16 to avoid a boost/NVCC issues (#1009, #1010) on OSX. 17 */ 18 namespace boost { class mutex; } 19 20 namespace caffe { 21 22 /** 23 * @brief An interface for the units of computation which can be composed into a 24 * Net. 25 * 26 * Layer%s must implement a Forward function, in which they take their input 27 * (bottom) Blob%s (if any) and compute their output Blob%s (if any). 28 * They may also implement a Backward function, in which they compute the error 29 * gradients with respect to their input Blob%s, given the error gradients with 30 * their output Blob%s. 31 */ 32 template <typename Dtype> 33 class Layer { 34 public: 35 /** 36 * You should not implement your own constructor. Any set up code should go 37 * to SetUp(), where the dimensions of the bottom blobs are provided to the 38 * layer. 39 */ 40 // 显式构造函数,从LayerParameter中加载配置 41 explicit Layer(const LayerParameter& param) 42 : layer_param_(param) { 43 // Set phase and copy blobs (if there are any). 44 phase_ = param.phase();//设置当前阶段(训练或预测) 45 if (layer_param_.blobs_size() > 0) { 46 blobs_.resize(layer_param_.blobs_size()); 47 //按照layer_param_设置本身Blob对象个数,并依次把每个Blob对象尺寸调整为与layer_param_中Blob尺寸一致 48 for (int i = 0; i < layer_param_.blobs_size(); ++i) { 49 blobs_[i].reset(new Blob<Dtype>()); 50 blobs_[i]->FromProto(layer_param_.blobs(i)); 51 } 52 } 53 } 54 virtual ~Layer() {} 55 56 /** 57 * @brief Implements common layer setup functionality. 58 * 59 * @param bottom the preshaped input blobs 60 * @param top 61 * the allocated but unshaped output blobs, to be shaped by Reshape 62 * 63 * Checks that the number of bottom and top blobs is correct. 64 * Calls LayerSetUp to do special layer setup for individual layer types, 65 * followed by Reshape to set up sizes of top blobs and internal buffers. 66 * Sets up the loss weight multiplier blobs for any non-zero loss weights. 67 * This method may not be overridden. 68 */ 69 //配置函数,实现常用层配置借口,不可被覆盖 70 void SetUp(const vector<Blob<Dtype>*>& bottom, 71 const vector<Blob<Dtype>*>& top) { 72 CheckBlobCounts(bottom, top);//检查blob 73 LayerSetUp(bottom, top); //与层类型相关的配置过程 74 Reshape(bottom, top); //对TopBlob进行变形 75 SetLossWeights(top); //设置损失权值因子Blob 76 } 77 78 /** 79 * @brief Does layer-specific setup: your layer should implement this function 80 * as well as Reshape. 81 * 82 * @param bottom 83 * the preshaped input blobs, whose data fields store the input data for 84 * this layer 85 * @param top 86 * the allocated but unshaped output blobs 87 * 88 * This method should do one-time layer specific setup. This includes reading 89 * and processing relevent parameters from the <code>layer_param_</code>. 90 * Setting up the shapes of top blobs and internal buffers should be done in 91 * <code>Reshape</code>, which will be called before the forward pass to 92 * adjust the top blob sizes. 93 */ 94 //层配置虚函数,做特定类型层相关配置,由该类型层自己实现 95 virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom, 96 const vector<Blob<Dtype>*>& top) {} 97 98 /** 99 * @brief Adjust the shapes of top blobs and internal buffers to accommodate 100 * the shapes of the bottom blobs. 101 * 102 * @param bottom the input blobs, with the requested input shapes 103 * @param top the top blobs, which should be reshaped as needed 104 * 105 * This method should reshape top blobs as needed according to the shapes 106 * of the bottom (input) blobs, as well as reshaping any internal buffers 107 * and making any other necessary adjustments so that the layer can 108 * accommodate the bottom blobs. 109 */ 110 //纯虚函数。变形函数,修改Top Blob以及内部Blob缓冲区形状 111 virtual void Reshape(const vector<Blob<Dtype>*>& bottom, 112 const vector<Blob<Dtype>*>& top) = 0; 113 114 /** 115 * @brief Given the bottom blobs, compute the top blobs and the loss. 116 * 117 * @param bottom 118 * the input blobs, whose data fields store the input data for this layer 119 * @param top 120 * the preshaped output blobs, whose data fields will store this layers' 121 * outputs 122 * \return The total loss from the layer. 123 * 124 * The Forward wrapper calls the relevant device wrapper function 125 * (Forward_cpu or Forward_gpu) to compute the top blob values given the 126 * bottom blobs. If the layer has any non-zero loss_weights, the wrapper 127 * then computes and returns the loss. 128 * 129 * Your layer should implement Forward_cpu and (optionally) Forward_gpu. 130 */ 131 // 前向传播函数 132 // 给定Bottom Blob,计算TopBlob和loss,返回值为当前层的loss 133 // 该函数会调用相应设备包装函数,如Forward_cpu or Forward_gpu来实现真正计算过程 134 // 如果该层有非零loss权重参数,包装函数会计算并返回loss 135 // 派生类应该实现Forward_cpu,Forward_gpu(可选) 136 inline Dtype Forward(const vector<Blob<Dtype>*>& bottom, 137 const vector<Blob<Dtype>*>& top); 138 139 /** 140 * @brief Given the top blob error gradients, compute the bottom blob error 141 * gradients. 142 * 143 * @param top 144 * the output blobs, whose diff fields store the gradient of the error 145 * with respect to themselves 146 * @param propagate_down 147 * a vector with equal length to bottom, with each index indicating 148 * whether to propagate the error gradients down to the bottom blob at 149 * the corresponding index 150 * @param bottom 151 * the input blobs, whose diff fields will store the gradient of the error 152 * with respect to themselves after Backward is run 153 * 154 * The Backward wrapper calls the relevant device wrapper function 155 * (Backward_cpu or Backward_gpu) to compute the bottom blob diffs given the 156 * top blob diffs. 157 * 158 * Your layer should implement Backward_cpu and (optionally) Backward_gpu. 159 */ 160 //反向传播函数 161 //给定输出的Top Blob误差梯度,计算输入的Bottom Blob的误差梯度 162 //propagate_down为多路开关,与Bottom Blob矢量维度相同,每个值表示是否将误差梯度传递到对应的Bottom Blob 163 //该函数会调用相应设备包装函数,如Backward_cpu and (可选) Backward_gpu实现计算过程,由派生类负责实现 164 inline void Backward(const vector<Blob<Dtype>*>& top, 165 const vector<bool>& propagate_down, 166 const vector<Blob<Dtype>*>& bottom); 167 168 /** 169 * @brief Returns the vector of learnable parameter blobs. 170 */ 171 vector<shared_ptr<Blob<Dtype> > >& blobs() { 172 return blobs_;//返回Layer内部可训练的权值、偏置项Blob向量 173 } 174 175 /** 176 * @brief Returns the layer parameter. 177 */ 178 //返回Layer初始化参数(由ProtoBuffer提供) 179 const LayerParameter& layer_param() const { return layer_param_; } 180 181 /** 182 * @brief Writes the layer parameter to a protocol buffer 183 */ 184 //将Layer初始化参数写入ProtoBuffer缓冲区 185 virtual void ToProto(LayerParameter* param, bool write_diff = false); 186 187 /** 188 * @brief Returns the scalar loss associated with a top blob at a given index. 189 */ 190 //返回与某个Top Blob相关的标量loss值 191 inline Dtype loss(const int top_index) const { 192 return (loss_.size() > top_index) ? loss_[top_index] : Dtype(0); 193 } 194 195 /** 196 * @brief Sets the loss associated with a top blob at a given index. 197 */ 198 //设置与某个Top Blob相关的标量loss值 199 inline void set_loss(const int top_index, const Dtype value) { 200 if (loss_.size() <= top_index) { 201 loss_.resize(top_index + 1, Dtype(0)); 202 } 203 loss_[top_index] = value; 204 } 205 206 /** 207 * @brief Returns the layer type. 208 */ 209 //返回层类型字符串,便于识别,由派生类实现 210 virtual inline const char* type() const { return ""; } 211 212 /** 213 * @brief Returns the exact number of bottom blobs required by the layer, 214 * or -1 if no exact number is required. 215 * 216 * This method should be overridden to return a non-negative value if your 217 * layer expects some exact number of bottom blobs. 218 */ 219 //返回Layer需要的输入Bottom Blob数目,-1表示不关心,需要派生类实现 220 virtual inline int ExactNumBottomBlobs() const { return -1; } 221 /** 222 * @brief Returns the minimum number of bottom blobs required by the layer, 223 * or -1 if no minimum number is required. 224 * 225 * This method should be overridden to return a non-negative value if your 226 * layer expects some minimum number of bottom blobs. 227 */ 228 virtual inline int MinBottomBlobs() const { return -1; } 229 /** 230 * @brief Returns the maximum number of bottom blobs required by the layer, 231 * or -1 if no maximum number is required. 232 * 233 * This method should be overridden to return a non-negative value if your 234 * layer expects some maximum number of bottom blobs. 235 */ 236 virtual inline int MaxBottomBlobs() const { return -1; } 237 /** 238 * @brief Returns the exact number of top blobs required by the layer, 239 * or -1 if no exact number is required. 240 * 241 * This method should be overridden to return a non-negative value if your 242 * layer expects some exact number of top blobs. 243 */ 244 //返回Layer需要的输出Top Blob数目,-1表示不关心,需要派生类实现 245 virtual inline int ExactNumTopBlobs() const { return -1; } 246 /** 247 * @brief Returns the minimum number of top blobs required by the layer, 248 * or -1 if no minimum number is required. 249 * 250 * This method should be overridden to return a non-negative value if your 251 * layer expects some minimum number of top blobs. 252 */ 253 virtual inline int MinTopBlobs() const { return -1; } 254 /** 255 * @brief Returns the maximum number of top blobs required by the layer, 256 * or -1 if no maximum number is required. 257 * 258 * This method should be overridden to return a non-negative value if your 259 * layer expects some maximum number of top blobs. 260 */ 261 virtual inline int MaxTopBlobs() const { return -1; } 262 /** 263 * @brief Returns true if the layer requires an equal number of bottom and 264 * top blobs. 265 * 266 * This method should be overridden to return true if your layer expects an 267 * equal number of bottom and top blobs. 268 */ 269 //返回Layer是否有相同的输入输出Blob,需要派生类实现 270 virtual inline bool EqualNumBottomTopBlobs() const { return false; } 271 272 /** 273 * @brief Return whether "anonymous" top blobs are created automatically 274 * by the layer. 275 * 276 * If this method returns true, Net::Init will create enough "anonymous" top 277 * blobs to fulfill the requirement specified by ExactNumTopBlobs() or 278 * MinTopBlobs(). 279 */ 280 //返回是否允许匿名Top Blob,即由该层自动创建。 281 //如果为真,Net::Init 会创建足够多的匿名Top Blob来满足 ExactNumTopBlobs() or MinTopBlobs()需求 282 virtual inline bool AutoTopBlobs() const { return false; } 283 284 /** 285 * @brief Return whether to allow force_backward for a given bottom blob 286 * index. 287 * 288 * If AllowForceBackward(i) == false, we will ignore the force_backward 289 * setting and backpropagate to blob i only if it needs gradient information 290 * (as is done when force_backward == false). 291 */ 292 //是否允许强制反向传播。如果AllowForceBackward(i) == false,忽略force_backward设定 293 virtual inline bool AllowForceBackward(const int bottom_index) const { 294 return true; 295 } 296 297 /** 298 * @brief Specifies whether the layer should compute gradients w.r.t. a 299 * parameter at a particular index given by param_id. 300 * 301 * You can safely ignore false values and always compute gradients 302 * for all parameters, but possibly with wasteful computation. 303 */ 304 //该Layer是否计算相对权值或偏置项的梯度,具体相对谁由param_id指定 305 inline bool param_propagate_down(const int param_id) { 306 return (param_propagate_down_.size() > param_id) ? 307 param_propagate_down_[param_id] : false; 308 } 309 /** 310 * @brief Sets whether the layer should compute gradients w.r.t. a 311 * parameter at a particular index given by param_id. 312 */ 313 //设置该Layer是否计算相对权值或偏置项的梯度,具体相对谁由param_id指定 314 inline void set_param_propagate_down(const int param_id, const bool value) { 315 if (param_propagate_down_.size() <= param_id) { 316 param_propagate_down_.resize(param_id + 1, true); 317 } 318 param_propagate_down_[param_id] = value; 319 } 320 321 322 protected: 323 /** The protobuf that stores the layer parameters */ 324 LayerParameter layer_param_;//保存Layer参数的ProtoBuffer对象 325 /** The phase: TRAIN or TEST */ 326 Phase phase_;//Layer当前所属阶段,可选TRAIN或TEST 327 /** The vector that stores the learnable parameters as a set of blobs. */ 328 vector<shared_ptr<Blob<Dtype> > > blobs_;//Layer内部权值偏置项,由Blob组织 329 /** Vector indicating whether to compute the diff of each param blob. */ 330 vector<bool> param_propagate_down_;//标志位,是否计算对应的参数的误差梯度 331 332 /** The vector that indicates whether each top blob has a non-zero weight in 333 * the objective function. */ 334 vector<Dtype> loss_;//标志位,在目标函数中是否每个Top Blob都有非零权值 335 336 //以下四个函数会在派生类中经常看到 337 338 /** @brief Using the CPU device, compute the layer output. */ 339 virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom, 340 const vector<Blob<Dtype>*>& top) = 0; 341 /** 342 * @brief Using the GPU device, compute the layer output. 343 * Fall back to Forward_cpu() if unavailable. 344 */ 345 virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom, 346 const vector<Blob<Dtype>*>& top) { 347 // LOG(WARNING) << "Using CPU code as backup."; 348 return Forward_cpu(bottom, top); 349 } 350 351 /** 352 * @brief Using the CPU device, compute the gradients for any parameters and 353 * for the bottom blobs if propagate_down is true. 354 */ 355 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top, 356 const vector<bool>& propagate_down, 357 const vector<Blob<Dtype>*>& bottom) = 0; 358 /** 359 * @brief Using the GPU device, compute the gradients for any parameters and 360 * for the bottom blobs if propagate_down is true. 361 * Fall back to Backward_cpu() if unavailable. 362 */ 363 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top, 364 const vector<bool>& propagate_down, 365 const vector<Blob<Dtype>*>& bottom) { 366 // LOG(WARNING) << "Using CPU code as backup."; 367 Backward_cpu(top, propagate_down, bottom); 368 } 369 370 /** 371 * Called by the parent Layer's SetUp to check that the number of bottom 372 * and top Blobs provided as input match the expected numbers specified by 373 * the {ExactNum,Min,Max}{Bottom,Top}Blobs() functions. 374 */ 375 //校验输入输出Blob数目是否满足Layer要求 376 virtual void CheckBlobCounts(const vector<Blob<Dtype>*>& bottom, 377 const vector<Blob<Dtype>*>& top) { 378 if (ExactNumBottomBlobs() >= 0) { 379 CHECK_EQ(ExactNumBottomBlobs(), bottom.size()) 380 << type() << " Layer takes " << ExactNumBottomBlobs() 381 << " bottom blob(s) as input."; 382 } 383 if (MinBottomBlobs() >= 0) { 384 CHECK_LE(MinBottomBlobs(), bottom.size()) 385 << type() << " Layer takes at least " << MinBottomBlobs() 386 << " bottom blob(s) as input."; 387 } 388 if (MaxBottomBlobs() >= 0) { 389 CHECK_GE(MaxBottomBlobs(), bottom.size()) 390 << type() << " Layer takes at most " << MaxBottomBlobs() 391 << " bottom blob(s) as input."; 392 } 393 if (ExactNumTopBlobs() >= 0) { 394 CHECK_EQ(ExactNumTopBlobs(), top.size()) 395 << type() << " Layer produces " << ExactNumTopBlobs() 396 << " top blob(s) as output."; 397 } 398 if (MinTopBlobs() >= 0) { 399 CHECK_LE(MinTopBlobs(), top.size()) 400 << type() << " Layer produces at least " << MinTopBlobs() 401 << " top blob(s) as output."; 402 } 403 if (MaxTopBlobs() >= 0) { 404 CHECK_GE(MaxTopBlobs(), top.size()) 405 << type() << " Layer produces at most " << MaxTopBlobs() 406 << " top blob(s) as output."; 407 } 408 if (EqualNumBottomTopBlobs()) { 409 CHECK_EQ(bottom.size(), top.size()) 410 << type() << " Layer produces one top blob as output for each " 411 << "bottom blob input."; 412 } 413 } 414 415 /** 416 * Called by SetUp to initialize the weights associated with any top blobs in 417 * the loss function. Store non-zero loss weights in the diff blob. 418 */ 419 //该函数在Layer的Setup函数中调用,主要目的是初始化与TopBlob相关的loss权重,放到top blob的diff域 420 //实际由Forward()计算loss 421 //loss_weight==0 表示当前层不参与loss计算,大部分layer属于这一类 422 //loss_weight==1 表示当前层参与loss计算,损失层(LossLayer)属于这一类 423 inline void SetLossWeights(const vector<Blob<Dtype>*>& top) { 424 //从ProtoBuffer对象中获得Layer参数,这里需要loss_weight参数 425 const int num_loss_weights = layer_param_.loss_weight_size(); 426 if (num_loss_weights) {//如果ProtoBuffer中至少有一个loss_weight 参数 427 //loss_weight个数应该与TopBlob相同,或者不要Loss_weigth参数 428 CHECK_EQ(top.size(), num_loss_weights) << "loss_weight must be " 429 "unspecified or specified once per top blob."; 430 //遍历每一个Top Blob 431 for (int top_id = 0; top_id < top.size(); ++top_id) { 432 //从ProtoBuffer对象中获得loss_weight参数(0或者1) 433 const Dtype loss_weight = layer_param_.loss_weight(top_id); 434 if (loss_weight == Dtype(0)) { continue; }//为0,跳过 435 this->set_loss(top_id, loss_weight);//不为0,进行网络的相关设置 436 const int count = top[top_id]->count();//本地记录loss_weight的值 437 Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff(); 438 //将loss_weight写入TopBlob的diff中,传递到需要使用的地方,实现远程同步 439 caffe_set(count, loss_weight, loss_multiplier); 440 } 441 } 442 } 443 444 private: 445 DISABLE_COPY_AND_ASSIGN(Layer);//禁用拷贝构造函数和赋值运算函数 446 }; // class Layer 447 448 // Forward and backward wrappers. You should implement the cpu and 449 // gpu specific implementations instead, and should not change these 450 // functions. 451 //前向传播函数、后向传播函数的包装,不需要修改这两个函数 452 //使用时只需要在派生类中改写Forward_cpu等 453 template <typename Dtype> 454 inline Dtype Layer<Dtype>::Forward(const vector<Blob<Dtype>*>& bottom, 455 const vector<Blob<Dtype>*>& top) { 456 Dtype loss = 0; 457 Reshape(bottom, top); 458 switch (Caffe::mode()) {//判断计算设备 459 case Caffe::CPU://在CPU上执行Forward计算 460 Forward_cpu(bottom, top);//调用CPU版本的Forward 461 //如果需要计算loss还需要进一步操作 462 for (int top_id = 0; top_id < top.size(); ++top_id) { 463 if (!this->loss(top_id)) { continue; } 464 const int count = top[top_id]->count(); 465 //若为损失层,则已经通过Forward函数计算出全局损失函数,放在Top Blob data中 466 const Dtype* data = top[top_id]->cpu_data(); 467 //若loss_weight不为0,则已经在SetLossWeight中将loss权重放在Top Blob diff 中 468 const Dtype* loss_weights = top[top_id]->cpu_diff(); 469 loss += caffe_cpu_dot(count, data, loss_weights);//加权loss之和,得到标量loss 470 } 471 break; 472 case Caffe::GPU: 473 Forward_gpu(bottom, top); 474 #ifndef CPU_ONLY 475 for (int top_id = 0; top_id < top.size(); ++top_id) { 476 if (!this->loss(top_id)) { continue; } 477 const int count = top[top_id]->count(); 478 const Dtype* data = top[top_id]->gpu_data(); 479 const Dtype* loss_weights = top[top_id]->gpu_diff(); 480 Dtype blob_loss = 0; 481 caffe_gpu_dot(count, data, loss_weights, &blob_loss); 482 loss += blob_loss; 483 } 484 #endif 485 break; 486 default: 487 LOG(FATAL) << "Unknown caffe mode."; 488 } 489 return loss; 490 } 491 //反向传播函数,直接调用对应设备函数 492 template <typename Dtype> 493 inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top, 494 const vector<bool>& propagate_down, 495 const vector<Blob<Dtype>*>& bottom) { 496 switch (Caffe::mode()) { 497 case Caffe::CPU: 498 Backward_cpu(top, propagate_down, bottom); 499 break; 500 case Caffe::GPU: 501 Backward_gpu(top, propagate_down, bottom); 502 break; 503 default: 504 LOG(FATAL) << "Unknown caffe mode."; 505 } 506 } 507 //将层配置参数序列化为ProtoBuffer 508 // Serialize LayerParameter to protocol buffer 509 template <typename Dtype> 510 void Layer<Dtype>::ToProto(LayerParameter* param, bool write_diff) { 511 param->Clear(); 512 param->CopyFrom(layer_param_); 513 param->clear_blobs(); 514 for (int i = 0; i < blobs_.size(); ++i) { 515 blobs_[i]->ToProto(param->add_blobs(), write_diff); 516 }//权值偏置项也会保存 517 } 518 519 } // namespace caffe 520 521 #endif // CAFFE_LAYER_H_
待更新
摘抄参考赵永科《深度学习 21天实战caffe》
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【caffe Layer】代码中文注释 - Python技术站