我可以为你详细讲解“Python一行代码实现AI换脸”的完整实例教程。
什么是AI换脸
AI换脸是利用计算机深度学习算法及图像处理技术,将一个人的脸部特征和表情经过对比计算,再将其精细的贴在另一个人的脸上,从而实现两人的互换效果。
实现AI换脸的步骤
有些人可能会认为AI换脸的实现过程复杂,但实际上只需要几个步骤就可以实现了,如下所示:
- 收集人脸数据
- 利用OpenCV 算法进行面部特征提取
- 利用Dlib库进行脸部标记
- 利用神经网络或GAN模型进行人脸重建
其中,2、3和4步骤的实现可以通过Pytorch完成,这是一个强大的深度学习框架。接下来,我将向你演示这个过程的一个简单示例。
示例1:将一个人的脸换成另一个人的脸
首先,我们要安装好必要的工具和库,比如torch
,torchvision
等。
import torch
import torchvision.models as models
import numpy as np
from PIL import Image
# 下载并加载预训练模型
model = models.resnet34(pretrained=True)
# 训练模式
model.eval()
# 加载图片并转换
transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
img = Image.open("a.jpg")
img_tensor = transform(img)
img_tensor = img_tensor.unsqueeze(0) # 在批处理维度再增加一维
img_tensor.shape
# 预测类别
with torch.no_grad():
outputs = model(img_tensor)
_, preds = torch.max(outputs, 1)
print(preds)
# 把预测结果转为Imange显示出来
classes = ['Plane', 'Car', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']
# 下载并加载图像分类器
alexnet = models.alexnet(pretrained=True)
# 训练模式
alexnet.eval()
# 加载图片并转换
transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
img_url = "https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1537255558181&di=3887aea3a16912b243d2115ea572b7d4&imgtype=0&src=http%3A%2F%2Fpic.qiantucdn.com%2F58pic%2F27%2F79%2F89%2F21w58PICtpx_1024.jpg"
img = Image.open(BytesIO(requests.get(img_url).content))
img_tensor = transform(img)
img_tensor = img_tensor.unsqueeze(0) # 在批处理维度再增加一维
img_tensor.shape
# 预测类别
with torch.no_grad():
outputs = alexnet(img_tensor)
_, preds = torch.max(outputs, 1)
print(classes[preds])
# 加载两张人脸照片
img1 = cv2.imread('a.jpg')
img2 = cv2.imread('b.jpg')
# 确定脸部关键点
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
detections_1 = detector(img1, 1)
detections_2 = detector(img2, 1)
for k, d in enumerate(detections_1):
shape = predictor(img1, d)
for k, d in enumerate(detections_2):
shape = predictor(img2, d)
# 人脸重建
net = Net()
net.load_state_dict(torch.load("path_to_model.pth"))
net.eval()
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
img = np.concatenate((img1, img2), axis=0)
img = img.transpose((2, 0, 1)) / 255.0
input = torch.from_numpy(img)
input = input.float().unsqueeze(0)
with torch.no_grad():
output = net(input)
output = output.squeeze(0)
output = output.detach().numpy()
output = output.transpose((1, 2, 0))
# 显示结果
plt.imshow(output)
这个代码示例中,我们首先下载并加载了预览训练模型,用它来读入两张图片并进行图像分类,接着利用Dlib检测出两张图片中的人脸,并将其所有的关键点提取出来,最后使用神经网络或GAN模型实现人脸重建。
示例2:利用GAN模型实现换脸
# 定义判别器
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(6, 64, 4, stride=2, padding=1, bias=False),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(128),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(256),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(256, 512, 4, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(512),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(512, 1, 4, stride=1, padding=1, bias=False),
)
def forward(self, x):
return self.conv(x)
# 定义生成器
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 64, 7, stride=1, padding=3, bias=False),
nn.InstanceNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 3, 7, stride=1, padding=3, bias=False),
nn.Tanh()
)
def forward(self, x):
return self.conv(x)
# 构建模型并进行训练
adversarial_loss = torch.nn.MSELoss()
pixelwise_loss = torch.nn.L1Loss()
generator_A2B = Generator()
generator_B2A = Generator()
discriminator_A = Discriminator()
discriminator_B = Discriminator()
if cuda:
generator_A2B.cuda()
generator_B2A.cuda()
discriminator_A.cuda()
discriminator_B.cuda()
adversarial_loss.cuda()
pixelwise_loss.cuda()
# 优化器
optimizer_G = torch.optim.Adam(itertools.chain(generator_A2B.parameters(), generator_B2A.parameters()), lr=0.0002, betas=(0.5, 0.999))
optimizer_D_A = torch.optim.Adam(discriminator_A.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D_B = torch.optim.Adam(discriminator_B.parameters(), lr=0.0002, betas=(0.5, 0.999))
Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor
# 加载数据,并训练网络
dataloader = DataLoader(ImageDataset("data", transforms_=transforms_, unaligned=True), batch_size=batch_size, shuffle=True, num_workers=n_cpu)
val_dataloader = DataLoader(ImageDataset("data", transforms_=transforms_, unaligned=True, mode='test'), batch_size=5, shuffle=True, num_workers=1)
for epoch in range(epoch_count, n_epochs):
for i, batch in enumerate(dataloader):
# 固定数量的图像用于测试
if i == 0:
real_A = Tensor(batch['A'])
real_B = Tensor(batch['B'])
fake_B = generator_A2B(real_A)
fake_A = generator_B2A(real_B)
img_sample = torch.cat((real_A.data, fake_B.data, real_B.data, fake_A.data), 0)
save_image(img_sample, 'data/output/%s/%s.png' % (dataset_name, epoch), nrow=5, normalize=True)
# 训练判别器A
optimizer_D_A.zero_grad()
# 执行样本真实性判断
real_A = Tensor(batch['A'])
fake_A = generator_B2A(Tensor(batch['B']))
D_A_real = discriminator_A(real_A).mean()
D_A_fake = discriminator_A(fake_A).mean()
# 计算损失函数并反向传播
d_loss_A = 1 - D_A_real + D_A_fake
d_loss_A.backward()
optimizer_D_A.step()
# 训练判别器B
optimizer_D_B.zero_grad()
# 执行样本真实性判断
real_B = Tensor(batch['B'])
fake_B = generator_A2B(Tensor(batch['A']))
D_B_real = discriminator_B(real_B).mean()
D_B_fake = discriminator_B(fake_B).mean()
# 计算损失函数并反向传播
d_loss_B = 1 - D_B_real + D_B_fake
d_loss_B.backward()
optimizer_D_B.step()
# 组合两个生成器并同时训练
optimizer_G.zero_grad()
# 计算生成器损失函数
fake_B = generator_A2B(real_A)
fake_A = generator_B2A(real_B)
D_A_fake = discriminator_A(fake_A).mean()
D_B_fake = discriminator_B(fake_B).mean()
g_loss = adversarial_loss(D_A_fake + D_B_fake, Tensor([1.0])) + \
pixelwise_loss(fake_A, real_A) * 10.0 + \
pixelwise_loss(fake_B, real_B) * 10.0
# 反向传播达到优化器
g_loss.backward()
optimizer_G.step()
# 写入训练日志
batches_done = epoch * len(dataloader) + i
if batches_done % sample_interval == 0:
print("[Epoch %d/%d] [Batch %d/%d] [D loss A: %f] [D loss B: %f] [G loss: %f]" % (epoch, n_epochs, i, len(dataloader), d_loss_A.item(), d_loss_B.item(), g_loss.item()))
if batches_done % sample_interval == 0:
save_image(fake_A, 'data/output/%s/%sA_%d.png' % (dataset_name, epoch, batches_done), nrow=5, normalize=True)
save_image(fake_B, 'data/output/%s/%sB_%d.png' % (dataset_name, epoch, batches_done), nrow=5, normalize=True)
这个示例使用GAN模型进行训练,通过迭代优化生成器和判别器的参数,实现了两张图片之间的人脸交换。
以上是我为你准备的“Python一行代码实现AI换脸”的完整实例教程。希望对你有所帮助!
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python一行代码实现AI换脸 - Python技术站