利用PyTorch实现VGG16教程

利用PyTorch实现VGG16教程

VGG16是一种非常流行的深度学习模型,可以用于图像分类和目标检测等任务。本文将介绍如何使用PyTorch实现VGG16,并提供两个示例说明。

下载数据集

在实现VGG16之前,我们需要先下载一个数据集。我们可以使用ImageNet数据集,该数据集包含超过100万张图像,用于训练深度学习模型。我们可以使用以下命令下载数据集:

wget http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_train.tar

实现VGG16

在PyTorch中实现VGG16,我们需要使用torch.nn模块。以下是一个简单的VGG16实现:

import torch
import torch.nn as nn

class VGG16(nn.Module):
    def __init__(self, num_classes=1000):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )
        self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

在这个示例中,我们首先定义了一个名为VGG16的模型,并在其中添加了一系列卷积层和池化层。然后,我们定义了一个分类器,用于将卷积层的输出转换为类别概率。最后,我们实现了forward方法,用于执行前向传播。

训练VGG16

在实现VGG16之后,我们需要使用数据集对其进行训练。以下是一个简单的训练示例:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# 加载数据集
transform = transforms.Compose(
    [transforms.RandomResizedCrop(224),
     transforms.RandomHorizontalFlip(),
     transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406],
                          std=[0.229, 0.224, 0.225])])

trainset = torchvision.datasets.ImageFolder(root='./ILSVRC2012_img_train', transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2)

# 实例化模型
net = VGG16()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

在这个示例中,我们首先加载了一个名为ILSVRC2012_img_train的数据集,并使用DataLoader将其转换为可迭代的数据集。然后,我们实例化了一个名为net的VGG16模型,并定义了一个损失函数和优化器。最后,我们使用数据集对模型进行了训练。

总结

在本文中,我们介绍了如何使用PyTorch实现VGG16,并提供了两个示例说明。使用这些方法,我们可以在PyTorch中实现VGG16,并使用数据集对其进行训练。如果您遵循这些步骤和示例,您应该能够在PyTorch中实现VGG16。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:利用PyTorch实现VGG16教程 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • new_zeros() pytorch版本的转换方式

    PyTorch中new_zeros()函数的用法 new_zeros()是PyTorch中的一个函数,用于创建一个指定形状的全零张量。以下是new_zeros()函数的用法: torch.Tensor.new_zeros(size, dtype=None, device=None, requires_grad=False) 其中,size是张量的形状,dty…

    PyTorch 2023年5月15日
    00
  • Win10操作系统中PyTorch虚拟环境配置+PyCharm配置

    Win10操作系统中PyTorch虚拟环境配置+PyCharm配置 在使用PyTorch进行深度学习开发时,我们通常需要搭建一个适合自己的开发环境。本文将介绍如何在Win10操作系统中配置PyTorch虚拟环境,并使用PyCharm进行开发,并演示两个示例。 示例一:使用Anaconda创建PyTorch虚拟环境 下载并安装Anaconda:从Anacond…

    PyTorch 2023年5月15日
    00
  • pytorch实现回归任务

    完整代码: import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt import torch.optim as optim #生成数据 #随机取100个-1到1之间的数,利用unsqueez…

    PyTorch 2023年4月7日
    00
  • pytorch自定义算子

    参照官方教程,实现pytorch自定义算子。主要分为以下几步: 改写算子为torch C++版本 注册算子 编译算子生成库文件 调用自定义算子 一、改写算子 这里参照官网例子,结合openCV实现仿射变换,C++代码如下: 点击展开warpPerspective.cpp #include “torch/script.h” #include “opencv2/…

    2023年4月8日
    00
  • 在 pytorch 中实现计算图和自动求导

    在PyTorch中,计算图和自动求导是非常重要的概念。计算图是一种数据结构,用于表示计算过程,而自动求导则是一种技术,用于计算计算图中的梯度。本文将提供一个完整的攻略,介绍如何在PyTorch中实现计算图和自动求导。我们将提供两个示例,分别是使用张量和使用变量实现计算图和自动求导。 示例1:使用张量实现计算图和自动求导 以下是一个示例,展示如何使用张量实现计…

    PyTorch 2023年5月15日
    00
  • pytorch中的自定义数据处理详解

    PyTorch中的自定义数据处理 在PyTorch中,我们可以使用自定义数据处理来加载和预处理数据。在本文中,我们将介绍如何使用PyTorch中的自定义数据处理,并提供两个示例说明。 示例1:使用PyTorch中的自定义数据处理加载图像数据 以下是一个使用PyTorch中的自定义数据处理加载图像数据的示例代码: import os import torch …

    PyTorch 2023年5月16日
    00
  • PyTorch 如何检查模型梯度是否可导

    在PyTorch中,我们可以使用torch.autograd.gradcheck()函数来检查模型梯度是否可导。torch.autograd.gradcheck()函数会对模型的梯度进行数值检查,以确保梯度计算的正确性。下面是一个示例: import torch # 定义一个简单的模型 class Model(torch.nn.Module): def __…

    PyTorch 2023年5月15日
    00
  • Pytorch中的gather使用方法

    PyTorch中的gather使用方法 在PyTorch中,gather是一个非常有用的函数,可以用于从一个张量中按照指定的索引收集元素。本文将介绍如何使用PyTorch中的gather函数,并演示两个示例。 示例一:使用gather函数从一个张量中按照指定的索引收集元素 import torch # 定义张量 x = torch.tensor([[1, 2…

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部