# The train/test net protocol buffer definition
#训练或测试网络模型定义文件路径。
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
#这个方案属于 MNIST,我们测试的批量大小为 100 、测试迭代次数 100 、 测试数据总量 10000 = 100 * 100
#所以呢?这个参数是根据 数据总量 和 网络模型定义文件 的 batch size 确定。
test_iter: 100
# Carry out testing every 500 training iterations.
# 50000 / 100 = 500
#每500次训练迭代进行测试。
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
# 网络的基本学习率、动量和权值衰减。
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
# 学习率策略
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
# 100 次迭代显示一次
display: 100
# The maximum number of iterations
# 最大迭代数据
max_iter: 10000
# snapshot intermediate results
# 每 5000 次迭代保存一次快照
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
# 选择训练模式
solver_mode: GPU
# 50000 : 10000
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Caffe Mnist 求解器 - Python技术站