Pandas DataFrame.drop()删除数据的方法实例

Pandas是Python中一个非常流行的数据分析库,其中DataFrame是Pandas中最常用的数据结构之一。Pandas DataFrame.drop()方法可以用于删除DataFrame中的行或列。以下是一个完整的攻略,包含两个示例说明。

示例1:删除行

在Pandas中,可以使用DataFrame.drop()方法删除DataFrame中的行。以下是一个删除行的示例:

import pandas as pd

# 创建DataFrame
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
        'age': [25, 32, 18, 47],
        'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)

# 删除行
df = df.drop([0, 2])

# 打印结果
print(df)

在这个示例中,我们首先使用字典创建了一个DataFrame。我们使用DataFrame.drop()方法删除了第0行和第2行。最后,我们打印了删除行后的DataFrame。

示例2:删除列

在Pandas中,可以使用DataFrame.drop()方法删除DataFrame中的列。以下是一个删除列的示例:

import pandas as pd

# 创建DataFrame
data = {'name': ['Alice', 'Bob', 'Charlie', 'David'],
        'age': [25, 32, 18, 47],
        'gender': ['F', 'M', 'M', 'M']}
df = pd.DataFrame(data)

# 删除列
df = df.drop('gender', axis=1)

# 打印结果
print(df)

在这个示例中,我们首先使用字典创建了一个DataFrame。我们使用DataFrame.drop()方法删除了“gender”列。注意,我们使用了axis=1参数来指定删除列。最后,我们打印了删除列后的DataFrame。

总结

Pandas DataFrame.drop()方法可以用于删除DataFrame中的行或列。如果要删除行,可以使用DataFrame.drop()方法,并指定要删除的行的索引。如果要删除列,可以使用DataFrame.drop()方法,并指定要删除的列的名称,并使用axis=1参数来指定删除列。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas DataFrame.drop()删除数据的方法实例 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Numpy中np.random.rand()和np.random.randn() 用法和区别详解

    以下是关于“Numpy中np.random.rand()和np.random.randn()用法和区别详解”的完整攻略。 背景 在NumPy中,可以使用np.random.rand()和np.random.randn()函数生成随机数。这两个函数可以用于生成随机数,但它们的用法和生成的随机的分布不同。本攻略将介绍如何使用这两个函数,并提供两个示例来演示它们的…

    python 2023年5月14日
    00
  • python numpy矩阵信息说明,shape,size,dtype

    以下是关于“Python NumPy矩阵信息说明的完整攻略”。 shape 在NumPy中,shape是一个元组,它表示数组的维度。例如,一个二维数组的shape为(m,n),其中m表示行数,n表示列数。下面是一个示例: import numpy as np # 创建一个二维数组 a = np.array([[1, 2,3], [4, 5, 6]]) # 输…

    python 2023年5月14日
    00
  • 详述numpy中的np.random.random()系列函数用法

    以下是关于Numpy中的np.random.random()系列函数用法的攻略: Numpy中的np.random.random()系列函数 在Numpy中,使用np.random.random系列函数来生成随机数。以下是一些实现方法: np.random.random() np.random.random()函数可以生成[0.0, 1.)之间的随机浮点数。…

    python 2023年5月14日
    00
  • Pytorch实现张量的创建与使用方法

    在PyTorch中,张量是一种多维数组,类似于NumPy中的数组。以下是PyTorch实现张量的创建与使用方法的攻略: 创建张量 可以使用torch库中的函数创建张量。以下是创建张量的示例代码: import torch # 创建一个张量 x = torch.tensor([[1, 2], [3, 4]]) # 打印张量 print(x) 在上面的代码中,首…

    python 2023年5月14日
    00
  • Python NumPy 数组索引的示例详解

    Python NumPy 数组索引的示例详解 介绍 在NumPy中,可以使用索引和切片来访问数组中的元素。本文将详细讲解Python NumPy数组引的使用方法提供两个示例,分别演了使用NumPy数组索引的方法。 数组索引的基本使用 在Num中,可以使用索来访问数组中的元素数组的索引从0开始,可以使用整数或切片来访问数组中的元素下面是一个示例“`pytho…

    python 2023年5月13日
    00
  • Python图像处理库crop()函数 thumbnail方法使用详解

    Python图像处理库crop()函数 thumbnail方法使用详解 简介 Python的图像处理库有很多种,如Pillow(PIL)和OpenCV等。其中Pillow是一个友好易用的Python图像处理库,提供了众多的图像处理功能。crop()函数和thumbnail()方法是其中常用的两个功能之一。crop()函数用于从图像中截取一部分区域,而thum…

    python 2023年5月14日
    00
  • python基础之Numpy库中array用法总结

    Python基础之Numpy库中array用法总结 NumPy库的基本概念 NumPy是Python中一个非常流行的学计算库,提供了许多常用函数和工具。Py的主要点是提供高效的多维数组,可以快速数学运算和数据处理。 安装NumPy库 在使用NumPy库之前,需要先安装它。可以使用pip命令来安装NumPy库。在命令行中输入以下命令: pip install …

    python 2023年5月13日
    00
  • Python3安装tensorflow及配置过程

    Python3安装TensorFlow及配置过程 本攻略将介绍如何在Python3中安装TensorFlow,并提供一些常见问题的解决方案。 1. 安装Python3 首先,我们需要安装Python3。可以从Python官网下载适合自己操作系统的版本:https://www.python.org/downloads/ 安装完成后,打开命令行窗口,输入以下命令…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部