1. .pth文件

(The weights of the model have been saved in a .pth file, which is nothing but a pickle file of the model’s tensor parameters.

We can load those into resnet18 using the model’s load _state_dict method.)

.pth文件报存了模型的权重,这个文件只是一个模型张量参数的pickle文件。

我们可以使用模型的load _state_dict方法将它们加载到 resnet18 中

2. 加载

2.1 如果.pth文件只保存了参数,则如下:

 1 import torch
 2 from torch.serialization import load
 3 import torchvision.models as models
 4 
 5 # pretrained=True使用预训练的模型
 6 resnet18 = models.resnet18(pretrained=True)#创建实例,模型下载.Pth文件
 7 model_path = 'D:/python_code/resnet18/resnet18-5c106cde.pth' 
 8 model_data = torch.load(model_path)
 9 resnet18.load_state_dict(model_data)
10 print(resnet18)

输出为:

Pytorch加载.pth文件

 

 

2.2 如果.pth文件保存的是整个网络结构+参数,则:

1 import torchvision.models as models
2 
3 # pretrained=True就可以使用预训练的模型
4 resnet18 = models.resnet18(pretrained=True)
5 print(resnet18)

输出为:

Pytorch加载.pth文件

 

 

参考:https://blog.csdn.net/u014264373/article/details/85332181

           https://blog.csdn.net/u013679159/article/details/104253030