跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理。

本文分享自华为云社区《[Python图像处理] 二十二.Python图像傅里叶变换原理及实现》,作者:eastmount。

本文主要讲解图像傅里叶变换的相关内容,在数字图像处理中,有两个经典的变换被广泛应用——傅里叶变换和霍夫变换。其中,傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪、图像增强等处理。

图像傅里叶变换原理

傅里叶变换(Fourier Transform,简称FT)常用于数字信号处理,它的目的是将时间域上的信号转变为频率域上的信号。随着域的不同,对同一个事物的了解角度也随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。同时,可以从频域里发现一些原先不易察觉的特征。傅里叶定理指出“任何连续周期信号都可以表示成(或者无限逼近)一系列正弦信号的叠加。”

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

下面引用李老师“Python+OpenCV图像处理”中的一个案例,非常推荐同学们去学习。如下图所示,他将某饮料的制作过程的时域角度转换为频域角度。

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

绘制对应的时间图和频率图如下所示:

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

傅里叶公式如下,其中w表示频率,t表示时间,为复变函数。它将时间域的函数表示为频率域的函数f(t)的积分。

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(或基函数)相加合成。从物理角度理解,傅里叶变换是以一组特殊的函数(三角函数)为正交基,对原函数进行线性变换,物理意义便是原函数在各组基函数的投影。如下图所示,它是由三条正弦曲线组合成。

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

傅里叶变换可以应用于图像处理中,经过对图像进行变换得到其频谱图。从谱频图里频率高低来表征图像中灰度变化剧烈程度。图像中的边缘信号和噪声信号往往是高频信号,而图像变化频繁的图像轮廓及背景等信号往往是低频信号。这时可以有针对性的对图像进行相关操作,例如图像除噪、图像增强和锐化等。

二维图像的傅里叶变换可以用以下数学公式(15-3)表达,其中f是空间域(Spatial Domain))值,F是频域(Frequency Domain)值

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

对上面的傅里叶变换有了大致的了解之后,下面通过Numpy和OpenCV分别讲解图像傅里叶变换的算法及操作代码。

二.Numpy实现傅里叶变换

Numpy中的 FFT包提供了函数 np.fft.fft2()可以对信号进行快速傅里叶变换,其函数原型如下所示,该输出结果是一个复数数组(Complex Ndarry)。

fft2(a, s=None, axes=(-2, -1), norm=None)

  • a表示输入图像,阵列状的复杂数组
  • s表示整数序列,可以决定输出数组的大小。输出可选形状(每个转换轴的长度),其中s[0]表示轴0,s[1]表示轴1。对应fit(x,n)函数中的n,沿着每个轴,如果给定的形状小于输入形状,则将剪切输入。如果大于则输入将用零填充。如果未给定’s’,则使用沿’axles’指定的轴的输入形状
  • axes表示整数序列,用于计算FFT的可选轴。如果未给出,则使用最后两个轴。“axes”中的重复索引表示对该轴执行多次转换,一个元素序列意味着执行一维FFT
  • norm包括None和ortho两个选项,规范化模式(请参见numpy.fft)。默认值为无

Numpy中的fft模块有很多函数,相关函数如下:

#计算一维傅里叶变换
numpy.fft.fft(a, n=None, axis=-1, norm=None)
#计算二维的傅里叶变换
numpy.fft.fft2(a, n=None, axis=-1, norm=None)
#计算n维的傅里叶变换
numpy.fft.fftn()
#计算n维实数的傅里叶变换
numpy.fft.rfftn()
#返回傅里叶变换的采样频率
numpy.fft.fftfreq()
#将FFT输出中的直流分量移动到频谱中央
numpy.fft.shift()

下面的代码是通过Numpy库实现傅里叶变换,调用np.fft.fft2()快速傅里叶变换得到频率分布,接着调用np.fft.fftshift()函数将中心位置转移至中间,最终通过Matplotlib显示效果图。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
#读取图像
img = cv.imread('test.png', 0)
#快速傅里叶变换算法得到频率分布
f = np.fft.fft2(img)
#默认结果中心点位置是在左上角,
#调用fftshift()函数转移到中间位置
fshift = np.fft.fftshift(f) 
#fft结果是复数, 其绝对值结果是振幅
fimg = np.log(np.abs(fshift))
#展示结果
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('Original Fourier')
plt.axis('off')
plt.subplot(122), plt.imshow(fimg, 'gray'), plt.title('Fourier Fourier')
plt.axis('off')
plt.show()

输出结果如图15-2所示,左边为原始图像,右边为频率分布图谱,其中越靠近中心位置频率越低,越亮(灰度值越高)的位置代表该频率的信号振幅越大。

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

三.Numpy实现傅里叶逆变换

下面介绍Numpy实现傅里叶逆变换,它是傅里叶变换的逆操作,将频谱图像转换为原始图像的过程。通过傅里叶变换将转换为频谱图,并对高频(边界)和低频(细节)部分进行处理,接着需要通过傅里叶逆变换恢复为原始效果图。频域上对图像的处理会反映在逆变换图像上,从而更好地进行图像处理。

图像傅里叶变化主要使用的函数如下所示:

#实现图像逆傅里叶变换,返回一个复数数组
numpy.fft.ifft2(a, n=None, axis=-1, norm=None)
#fftshit()函数的逆函数,它将频谱图像的中心低频部分移动至左上角
numpy.fft.fftshift()
#将复数转换为0至255范围
iimg = numpy.abs(逆傅里叶变换结果)

下面的代码分别实现了傅里叶变换和傅里叶逆变换。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
#读取图像
img = cv.imread('Lena.png', 0)
#傅里叶变换
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
res = np.log(np.abs(fshift))
#傅里叶逆变换
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
#展示结果
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(iimg, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

输出结果如图15-4所示,从左至右分别为原始图像、频谱图像、逆傅里叶变换转换图像。

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

四.OpenCV实现傅里叶变换

OpenCV 中相应的函数是cv2.dft()和用Numpy输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分,并且输入图像要首先转换成 np.float32 格式。其函数原型如下所示:

dst = cv2.dft(src, dst=None, flags=None, nonzeroRows=None)

  • src表示输入图像,需要通过np.float32转换格式
  • dst表示输出图像,包括输出大小和尺寸
  • flags表示转换标记,其中DFT _INVERSE执行反向一维或二维转换,而不是默认的正向转换;DFT _SCALE表示缩放结果,由阵列元素的数量除以它;DFT _ROWS执行正向或反向变换输入矩阵的每个单独的行,该标志可以同时转换多个矢量,并可用于减少开销以执行3D和更高维度的转换等;DFT _COMPLEX_OUTPUT执行1D或2D实数组的正向转换,这是最快的选择,默认功能;DFT _REAL_OUTPUT执行一维或二维复数阵列的逆变换,结果通常是相同大小的复数数组,但如果输入数组具有共轭复数对称性,则输出为真实数组
  • nonzeroRows表示当参数不为零时,函数假定只有nonzeroRows输入数组的第一行(未设置)或者只有输出数组的第一个(设置)包含非零,因此函数可以处理其余的行更有效率,并节省一些时间;这种技术对计算阵列互相关或使用DFT卷积非常有用

注意,由于输出的频谱结果是一个复数,需要调用cv2.magnitude()函数将傅里叶变换的双通道结果转换为0到255的范围。其函数原型如下:

cv2.magnitude(x, y)

  • x表示浮点型X坐标值,即实部
  • y表示浮点型Y坐标值,即虚部
    最终输出结果为幅值,即:

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

完整代码如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt
#读取图像
img = cv2.imread('Lena.png', 0)
#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
#将频谱低频从左上角移动至中心位置
dft_shift = np.fft.fftshift(dft)
#频谱图像双通道复数转换为0-255区间
result = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))
#显示图像
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(result, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

输出结果如图15-5所示,左边为原始“Lena”图,右边为转换后的频谱图像,并且保证低频位于中心位置。

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

五.OpenCV实现傅里叶逆变换

在OpenCV 中,通过函数cv2.idft()实现傅里叶逆变换,其返回结果取决于原始图像的类型和大小,原始图像可以为实数或复数。其函数原型如下所示:

dst = cv2.idft(src[, dst[, flags[, nonzeroRows]]])

  • src表示输入图像,包括实数或复数
  • dst表示输出图像
  • flags表示转换标记
  • nonzeroRows表示要处理的dst行数,其余行的内容未定义(请参阅dft描述中的卷积示例)

完整代码如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt
#读取图像
img = cv2.imread('Lena.png', 0)
#傅里叶变换
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftshift = np.fft.fftshift(dft)
res1= 20*np.log(cv2.magnitude(dftshift[:,:,0], dftshift[:,:,1]))
#傅里叶逆变换
ishift = np.fft.ifftshift(dftshift)
iimg = cv2.idft(ishift)
res2 = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])
#显示图像
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res1, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(res2, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

输出结果如图15-6所示,第一幅图为原始“Lena”图,第二幅图为傅里叶变换后的频谱图像,第三幅图为傅里叶逆变换,频谱图像转换为原始图像的过程。

跟我学Python图像处理丨带你掌握傅里叶变换原理及实现

六.总结

傅里叶变换的目的并不是为了观察图像的频率分布(至少不是最终目的),更多情况下是为了对频率进行过滤,通过修改频率以达到图像增强、图像去噪、边缘检测、特征提取、压缩加密等目的。下一篇文章,作者将结合傅里叶变换和傅里叶逆变换讲解它的应用。

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:跟我学Python图像处理丨带你掌握傅里叶变换原理及实现 - Python技术站

(0)
上一篇 2023年4月2日 下午4:54
下一篇 2023年4月2日 下午4:54

相关文章

  • 读书笔记丨理解和学习事务,让你更好地融入云原生时代

    摘要:分布式事务与云原生技术有很强的关联,可以帮助云原生应用程序实现高效的分布式事务处理。 本文分享自华为云社区《理解和学习事务,让你更好地融入云原生时代》,作者: breakDawn。 随着云原生的概念越来越火,服务的架构应该如何发展和演进,成为很多程序员关心的话题。大名鼎鼎的《深入理解java虚拟机》一书作者于21年推出了新作《凤凰架构》,从这本书中可以…

    云计算 2023年5月8日
    00
  • 华为亮相KubeCon EU 2023 新云原生开源项目Kuasar推动“云上演进”

    摘要:协力同行、拥抱开源,解放数字生产力,为社会和行业带来更多价值。 在数字时代,如果说企业是一艘巨大的货船,那么云原生则为企业的每一个业务、每一个应用提供了标准化的集装箱,摆脱笨重的底层桎梏,打造新一代云操作系统,驾驶这轮“货船”航向数字化的未来世界。 4月18日—21日,一年一度的云原生开源领域顶级峰会KubeCon & CloudNativeC…

    云计算 2023年4月25日
    00
  • Split to Be Slim: 论文复现

    摘要:在本论文中揭示了这样一种现象:一层内的许多特征图共享相似但不相同的模式。 本文分享自华为云社区《Split to Be Slim: 论文复现》,作者: 李长安 。 Split to Be Slim: An Overlooked Redundancy in Vanilla Convolution 论文复现 1、问题切入 已经提出了许多有效的解决方案来减少…

    人工智能概论 2023年4月25日
    00
  • Karmada v1.5发布:多调度组助力成本优化

    摘要:在最新发布的1.5版本中,Karmada 提供了多调度组的能力,利用该能力,用户可以实现将业务优先调度到成本更低的集群,或者在主集群故障时,优先迁移业务到指定的备份集群。 本文分享自华为云社区《Karmada v1.5发布!多调度组助力成本优化》,作者:华为云云原生团队。 Karmada 是开放的多云多集群容器编排引擎,旨在帮助用户在多云环境下部署和运…

    云计算 2023年4月19日
    00
  • Serverless冷启动:如何让函数计算更快更强?

    摘要:借助Serverless计算,开发者仅需上传业务代码并进行简单的资源配置便可实现服务的快速构建部署,云服务商则按照函数服务调用量和实际资源使用收费,从而帮助用户实现业务的快速交付和低成本运行。 本文分享自华为云社区《Serverless冷启动:如何让函数计算更快更强?》,作者:DevAI 。 问题背景 Serverless计算也称服务器无感知计算或函数…

    云计算 2023年4月17日
    00
  • 云图说|图解云消息服务KooMessage

    摘要:云消息服务(KooMessage)是提供数字化营销新入口,覆盖全行业、全场景、全终端的一站式富媒体消息服务。 本文分享自华为云社区《【开天aPaaS】图解云消息服务KooMessage》,作者: 开天aPaaS小助手。 云消息服务(KooMessage)是提供数字化营销新入口,覆盖全行业、全场景、全终端的一站式富媒体消息服务。KooMessage融合多…

    云计算 2023年4月17日
    00
  • 探讨AIGC的崛起历程,浅析其背后技术发展

    摘要:本文主要讨论了AIGC(人工智能生成内容)的发展历程、现状、应用,浅析其背后技术发展、与华为云的联系,以及面临的挑战和展望。 本文分享自华为云社区《AIGC:人工智能生成内容的崛起与未来展望》,作者:杜甫盖房子。 AIGC被认为是继专业生成内容(PGC)和用户生成内容(UGC)之后,利用人工智能技术自动生成内容的新型生产方式。随着技术的发展,如Stab…

    人工智能概论 2023年5月10日
    00
  • 使用CodeArts发布OBS,函数工作流刷新CDN缓存

    摘要:上次通过OBS和CDN部署来Hexo网站,但是每次我们不可能都自己编译然后在上传到OBS,不然太麻烦了,所以我们需要构建流水线,通过PUSH Markdown来发布文章。 本文分享自华为云社区《使用软件开发生产线CodeArts发布OBS,函数工作流刷新CDN缓存》,作者:熊大不大 。 上次通过OBS和CDN部署来Hexo网站,但是每次我们不可能都自己…

    云计算 2023年4月17日
    00
合作推广
合作推广
分享本页
返回顶部