一,train_val.prototxt
name: "CIFAR10_quick"
layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
# mirror: true
# mean_file: "examples/cifar10/mean.binaryproto"uu
mean_file: "myself/00b/00bmean.binaryproto"
}
data_param {
# source: "examples/cifar10/cifar10_train_lmdb"
source: "myself/00b/00b_train_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
# mean_file: "examples/cifar10/mean.binaryproto"
mean_file: "myself/00b/00bmean.binaryproto"
}
data_param {
# source: "examples/cifar10/cifar10_test_lmdb"
source: "myself/00b/00b_val_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
# pad: 1
kernel_size: 4
stride: 1
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "pool1"
top: "pool1"
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
# pad: 2
kernel_size: 4
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
# pad: 2
kernel_size: 4
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "pool3"
top: "conv4"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
# pad: 2
kernel_size: 4
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4"
top: "pool4"
pooling_param {
pool: AVE
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool4"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 200
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 3
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
二,solver.prototxt
# reduce the learning rate after 8 epochs (4000 iters) by a factor of 10
# The train/test net protocol buffer definition
net: "myself/00b/train_val.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 10
# Carry out testing every 500 training iterations.
test_interval: 70
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.001
momentum: 0.9
weight_decay: 0.004
# The learning rate policy
lr_policy: "fixed"
# lr_policy: "step"
gamma: 0.1
stepsize: 100
# Display every 100 iterations
display: 10
# The maximum number of iterations
max_iter: 2000
# snapshot intermediate results
# snapshot: 3000
# snapshot_format: HDF5
snapshot_prefix: "myself/00b/00b"
# solver mode: CPU or GPU
solver_mode: CPU
三,deploy.prototxt
name: "CIFAR10_quick"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 101 dim: 101 } }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 32
kernel_size: 4
stride: 1
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
convolution_param {
num_output: 32
kernel_size: 4
stride: 1
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
convolution_param {
num_output: 32
kernel_size: 4
stride: 1
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "pool3"
top: "conv4"
convolution_param {
num_output: 32
kernel_size: 4
stride: 1
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "pool4"
type: "Pooling"
bottom: "conv4"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool4"
top: "ip1"
inner_product_param {
num_output: 200
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
inner_product_param {
num_output: 3
}
}
layer {
#name: "loss"
name: "prob"
type: "Softmax"
bottom: "ip2"
top: "prob"
#top: "loss"
}
参考一:
模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹下, 将需要的两个配置文件,复制到myfile文件夹内
# sudo cp models/bvlc_reference_caffenet/solver.prototxt examples/myfile/
# sudo cp models/bvlc_reference_caffenet/train_val.prototxt examples/myfile/
修改train_val.protxt,只需要修改两个阶段的data层就可以了,其它可以不用管。
name: "CaffeNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "examples/myfile/mean.binaryproto"
}
data_param {
source: "examples/myfile/img_train_lmdb"
batch_size: 256
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file: "examples/myfile/mean.binaryproto"
}
data_param {
source: "examples/myfile/img_test_lmdb"
batch_size: 50
backend: LMDB
}
}
实际上就是修改两个data layer的mean_file和source这两个地方,其它都没有变化 。
修改其中的solver.prototxt
# sudo vi examples/myfile/solver.prototxt
net: "examples/myfile/train_val.prototxt"
test_iter: 2
test_interval: 50
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100
display: 20
max_iter: 500
momentum: 0.9
weight_decay: 0.005
solver_mode: GPU
100个测试数据,batch_size为50,因此test_iter设置为2,就能全cover了。在训练过程中,调整学习率,逐步变小。
参考二:
前面做好了lmdb和均值文件,下面以Googlenet为例修改网络并训练模型。
我们将caffe-mastermodels下的bvlc_googlenet文件夹复制到caffe-masterexamplesimagenet下。(因为我们的lmdb和均值都在这里,放一起方便些)
打开train_val.txt,修改:
1.修改data层:
- layer {
- name: "data"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TRAIN
- }
- transform_param {
- mirror: true
- crop_size: 224
- mean_file: "examples/imagenet/mydata_mean.binaryproto" #均值文件
- #mean_value: 104 #这些注释掉
- #mean_value: 117
- #mean_value: 123
- }
- data_param {
- source: "examples/imagenet/mydata_train_lmdb" #训练集的lmdb
- batch_size: 32 #根据GPU修改
- backend: LMDB
- }
- }
- layer {
- name: "data"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TEST
- }
- transform_param {
- mirror: false
- crop_size: 224
- mean_file: "examples/imagenet/mydata_mean.binaryproto" #均值文件
- #mean_value: 104
- #mean_value: 117
- #mean_value: 123
- }
- data_param {
- source: "examples/imagenet/mydata_val_lmdb" #验证集lmdb
- batch_size: 50 #和solver中的test_iter相乘约等于验证集大小
- backend: LMDB
- }
- }
2.修改输出:
由于Googlenet有三个输出,所以改三个地方,其他网络一般只有一个输出,则改一个地方即可。
如果是微调,那么输出层的层名也要修改。(参数根据层名来初始化,由于输出改了,该层参数就不对应了,因此要改名)
layer {
name: "loss1/classifier"
type: "InnerProduct"
bottom: "loss1/fc"
top: "loss1/classifier"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000 #改成你的数据集类别数
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss2/classifier"
type: "InnerProduct"
bottom: "loss2/fc"
top: "loss2/classifier"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000 #改成你的数据集类别数
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss3/classifier"
type: "InnerProduct"
bottom: "pool5/7x7_s1"
top: "loss3/classifier"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000 #改成你的数据集类别数
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
3.打开deploy.prototxt,修改:
layer {
name: "loss3/classifier"
type: "InnerProduct"
bottom: "pool5/7x7_s1"
top: "loss3/classifier"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000 #改成你的数据集类别数
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
如果是微调,该层层名和train_val.prototxt修改一致。
接着,打开solver,修改:
net: "examples/imagenet/bvlc_googlenet/train_val.prototxt" #路径不要错
test_iter: 1000 #前面已说明该值
test_interval: 4000 #迭代多少次测试一次
test_initialization: false
display: 40
average_loss: 40
base_lr: 0.01
lr_policy: "step"
stepsize: 320000 #迭代多少次改变一次学习率
gamma: 0.96
max_iter: 10000000 #迭代次数
momentum: 0.9
weight_decay: 0.0002
snapshot: 40000
snapshot_prefix: "examples/imagenet/bvlc_googlenet" #生成的caffemodel保存在imagenet下,形如bvlc_googlenet_iter_***.caffemodel
solver_mode: GPU
这时,我们回到caffe-masterexamplesimagenet下,打开train_caffenet.sh,修改:
(如果是微调,在脚本里加入-weights **/**/**.caffemodel即可,即用来微调的caffemodel路径)
#!/usr/bin/env sh
./build/tools/caffe train
-solver examples/imagenet/bvlc_googlenet/solver.prototxt -gpu 0
(如果有多个GPU,可自行选择) 然后,在caffe-master下执行改脚本即可开始训练:$caffe-master ./examples/imagenet/train_caffenet.sh
训练得到的caffemodel就可以用来做图像分类了,此时,需要(1)得到的labels.txt,(2)得到的mydata_mean.binaryproto,(3)得到的caffemodel以及已经修改过的deploy.prototxt,共四个文件,具体过程看:http://blog.csdn.net/sinat_30071459/article/details/50974695
参考三:
1、*_train_test.prototxt文件
这是训练与测试网络配置文件
(1)在数据层中 参数include{
phase:TRAIN/TEST
}
TRAIN与TEST不能有“...”否则会报错,还好提示信息里,会提示哪一行出现了问题,如下图:
数字8就代表配置文件的第8行出现了错误
(2)卷积层和全连接层相似:卷积层(Convolution),全连接层(InnerProduct,容易翻译成内积层)相似处有两个【1】:都有两个param{lr_mult:1
decay_mult:1
}
param{lr_mult: 2
decay_mult: 0
}
【2】:convolution_param{}与inner_product_param{}里面的参数相似,甚至相同
今天有事,明天再续!
续上!
(3)平均值文件*_mean.binaryproto要放在transform_param{}里,训练与测试数据集放在data_param{}里
2.*_deploy.prototxt文件
【1】*_deploy.prototxt文件的构造和*_train_test.prototxt文件的构造稍有不同首先没有test网络中的test模块,只有训练模块
【2】数据层的写法和原来也有不同,更加简洁:
input: "data" input_dim: 1 input_dim: 3 input_dim: 32 input_dim: 32
注意红色部分,那是数据层的名字,没有这个的话,第一卷积层无法找到数据,我一开始没有加这句就报错。下面的四个参数有点类似batch_size(1,3,32,32)里四个参数
【3】卷积层和全连接层中weight_filler{}与bias_filler{}两个参数不用再填写,应为这两个参数的值,由已经训练好的模型*.caffemodel文件提供
【4】输出层的变化(1)没有了test模块测试精度(2)输出层
*_train_test.prototxt文件:
layer{ name: "loss" type: "SoftmaxWithLoss"#注意此处与下面的不同 bottom: "ip2" bottom: "label"#注意标签项在下面没有了,因为下面的预测属于哪个标签,因此不能提供标签 top: "loss" }
*_deploy.prototxt文件:
layer { name: "prob" type: "Softmax" bottom: "ip2" top: "prob" }
***注意在两个文件中输出层的类型都发生了变化一个是SoftmaxWithLoss,另一个是Softmax。另外为了方便区分训练与应用输出,训练是输出时是loss,应用时是prob。
3、*_slover.prototxt
net: "test.prototxt" #训练网络的配置文件 test_iter: 100 #test_iter 指明在测试阶段有多上个前向过程(也就是有多少图片)被执行。 在MNIST例子里,在网络配置文件里已经设置test网络的batch size=100,这里test_iter 设置为100,那在测试阶段共有100*100=10000 图片被处理 test_interval: 500 #每500次训练迭代后,执行一次test base_lr: 0.01 #学习率初始化为0.01 momentum:0.9 #u=0.9 weight_decay:0.0005 # lr_policy: "inv" gamma: 0.0001 power: 0.75 #以上三个参数都和降低学习率有关,详细的学习策略和计算公式见下面 // The learning rate decay policy. The currently implemented learning rate
// policies are as follows:
// - fixed: always return base_lr.
// - step: return base_lr * gamma ^ (floor(iter / step))
// - exp: return base_lr * gamma ^ iter
// - inv: return base_lr * (1 + gamma * iter) ^ (- power)
// - multistep: similar to step but it allows non uniform steps defined by
// stepvalue
// - poly: the effective learning rate follows a polynomial decay, to be
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
// - sigmoid: the effective learning rate follows a sigmod decay
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
// where base_lr, max_iter, gamma, step, stepvalue and power are defined
// in the solver parameter protocol buffer, and iter is the current iteration. display:100 #每100次迭代,显示结果 snapshot: 5000 #每5000次迭代,保存一次快照 snapshot_prefix: "path_prefix" #快照保存前缀:更准确的说是快照保存路径+前缀,应为文件名后的名字是固定的 solver_mode:GPU #选择解算器是用cpu还是gpu
批处理文件编写:
F:/caffe/caffe-windows-master/bin/caffe.exe train --solver=C:/Users/Administrator/Desktop/caffe_test/cifar-10/cifar10_slover_prototxt --gpu=all pause
参考四:
将train_val.prototxt 转换成deploy.prototxt
1.删除输入数据(如:type:data...inckude{phase: TRAIN}),然后添加一个数据维度描述。
- input: "data"
- input_dim: 1
- input_dim: 3
- input_dim: 224
- input_dim: 224
- force_backward: true
input: "data"
input_dim: 1
input_dim: 3
input_dim: 224
input_dim: 224
force_backward: true
2.移除最后的“loss” 和“accuracy” 层,加入“prob”层。
layers {
name: "prob"
type: SOFTMAX
bottom: "fc8"
top: "prob"
}
如果train_val文件中还有其他的预处理层,就稍微复杂点。如下,在'data'层,在‘data’层和‘conv1’层(with bottom:”data” / top:”conv1″). 插入一个层来计算输入数据的均值。
- layer {
- name: “mean”
- type: “Convolution”
- <strong>bottom: “data”
- top: “data”</strong>
- param {
- lr_mult: 0
- decay_mult: 0
- }
- …}
在deploy.prototxt文件中,“mean” 层必须保留,只是容器改变,相应的‘conv1’也要改变 ( bottom:”mean”/ top:”conv1″ )。
- layer {
- name: “mean”
- type: “Convolution”
- <strong>bottom: “data”
- top: “mean“</strong>
- param {
- lr_mult: 0
- decay_mult: 0
- }
- …}
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:4.caffe:train_val.prototxt、 solver.prototxt 、 deploy.prototxt( 创建模型与编写配置文件) - Python技术站