Pandas直接读取sql脚本的方法

当我们需要从SQL数据库(如MySQL,SQL Server等)中读取数据时,可以使用Python的Pandas库来实现。Pandas库提供了一种方便的方法来读取SQL查询结果并将其转换成DataFrame对象。下面是使用Pandas直接读取SQL脚本的方法:

步骤1:导入必要的库

我们首先需要导入两个库,分别是Pandas和SQLAlchemy。Pandas库用于数据分析和处理,而SQLAlchemy用于与SQL数据库进行交互。

import pandas as pd
from sqlalchemy import create_engine

步骤2:建立数据库连接

接下来,我们需要建立数据库连接并创建一个引擎对象。此时需要注意的是,我们需要根据自己的数据库类型、地址、端口、用户名和密码等情况来设置连接参数。

db_type = 'mysql'
user = 'root'
pwd = '123456'
host = 'localhost'
port = '3306'
db_name = 'test_db'

# 创建连接字符串
conn_str = f'{db_type}://{user}:{pwd}@{host}:{port}/{db_name}'

# 创建引擎对象
engine = create_engine(conn_str)

步骤3:执行SQL语句并转换为DataFrame对象

接下来,我们可以使用Pandas的read_sql_query()函数来执行SQL语句并将结果转换成DataFrame对象。此时需要传入两个参数,分别是SQL语句和建立的引擎对象。

# 执行SQL语句并转换为DataFrame对象
df = pd.read_sql_query('SELECT * FROM student', engine)

# 打印DataFrame对象
print(df)

上面的示例代码展示了如何从“test_db”数据库的“student”表中读取所有行并将结果转换为DataFrame对象。如果SQL语句查询结果包含多个表,则可以使用JOIN语句联接它们。

示例2:使用参数传递SQL查询条件

在执行SQL查询时,我们有时需要使用参数来传递变量,比如说查询成绩大于指定值的学生数据,这个指定值是从用户输入的。在这种情况下,我们需要使用参数化的SQL语句,同时使用Pandas的read_sql_query()函数来传递参数。

# 定义参数
score_threshold = 90

# 定义参数化SQL语句
sql = 'SELECT * FROM student WHERE score > :score'

# 执行SQL语句并传递参数
df = pd.read_sql_query(sql, con=engine, params={'score': score_threshold})

# 打印DataFrame对象
print(df)

上面的示例代码展示了如何将参数传递给SQL语句,以获取成绩大于指定值的学生数据。具体地,我们使用了参数化SQL语句,并通过Pandas的read_sql_query()函数中的params参数来指定传递的参数。此时,通过score替换为score_threshold,并将score_threshold作为params参数传递给了read_sql_query()函数。

以上就是使用Pandas直接读取SQL脚本的方法,我们需要注意的是:读取大数据量的情况下需分页读取。

阅读剩余 28%

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas直接读取sql脚本的方法 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Pandas最常用的设置数据显示格式的11种方法

    在用 Pandas 做数据分析的过程中,为了更好地呈现和展示数据,使数据更易读、易于理解,从而提高数据分析的效率和准确性,我们经常需要设置数据的显示格式。 通过设置数据显示格式,可以调整数据的小数位数、数值的对齐方式、列宽等参数,使得数据在表格中更美观、整洁,同时也更符合数据的实际含义。此外,设置数据显示格式还可以对数据进行格式化输出,如将数值格式化为货币、…

    Pandas 2023年3月5日
    00
  • 使用zip从列表中创建pandas数据框架

    首先,为了使用zip从列表中创建pandas数据框架,我们需要掌握以下步骤: 步骤1:导入必要的库和模块 首先需要导入需要的库和模块,即pandas。 import pandas as pd 步骤2:创建列表 接下来需要创建需要用于创建数据框架的列表。 例如,我们可以创建一个包含各列对应的列表,然后将它们组合成一个新的列表,如下所示: names = [‘A…

    python-answer 2023年3月27日
    00
  • pandas DataFrame.shift()函数的具体使用

    pandas提供了许多函数来处理数据集,其中shift()函数就是其中一个非常常用的函数,用于对DataFrame在行方向或列方向上进行位移操作。本篇攻略将详细讲解pandas的shift()函数的具体使用方法,包括函数参数、返回值、使用示例等。 函数参数 shift()函数有如下主要参数: periods: 整数,指定位移的距离,正数表示向下移动,负数表示…

    python 2023年5月14日
    00
  • Python Pandas中合并数据的5个函数使用详解

    下面我将详细讲解“Python Pandas中合并数据的5个函数使用详解”的完整攻略。 简介 在数据处理中,我们常常需要将不同来源的数据合并在一起,以方便分析和处理。在Python Pandas中,有很多种方法可以达到这个目的,其中比较常用的有以下5个函数: pd.concat() : 在行或列上拼接两个或多个DataFrame或Series df.appe…

    python 2023年5月14日
    00
  • 详解10个可以快速用Python进行数据分析的小技巧

    下面为您详细讲解“详解10个可以快速用Python进行数据分析的小技巧”的完整攻略。 详解10个可以快速用Python进行数据分析的小技巧 技巧1:使用Python的pandas库读取和处理数据 在Python中,pandas库是一个非常强大的数据分析工具,常用于读取、写入和处理各种数据格式。使用pandas读取和处理数据可以极大地提高工作效率,尤其是对于大…

    python 2023年5月14日
    00
  • 关于pandas的离散化,面元划分详解

    下面是关于pandas的离散化、面元划分的详解。 什么是离散化和面元划分? 离散化是数据预处理的一种方式,将连续的数值型数据分成有限个数字区间,称为“面元”(bin),将一些连续数据转为离散数据。比如对于身高这个特征,我们可以根据数据的分布情况,将身高按照一定的间隔区间进行划分,比如160-165,165-170等等,这样就将连续的身高范围划分成了离散的几个…

    python 2023年5月14日
    00
  • pandas中字典和dataFrame的相互转换

    Pandas是Python中用于数据处理和分析的重要库之一,其中字典和dataframe的相互转换是经常需要进行的操作。 将字典转换为dataframe 将字典转换为dataframe可以使用Pandas中的 DataFrame() 函数。下面是一个简单的示例: # 导入pandas库 import pandas as pd # 定义一个字典 data = …

    python 2023年5月14日
    00
  • Python pandas处理缺失值方法详解(dropna、drop、fillna)

    Python pandas处理缺失值方法详解 在pandas中,处理缺失值是十分重要的操作,可以利用Pandas提供的dropna()、fillna()、drop()等函数进行处理。这篇文章,将详细介绍这些函数的用法和示例。 一、dropna()函数 dropna函数可以删除存在缺失值的行或列,其常用的参数有两个(axis,how)。 1. axis参数 a…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部